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Chapter 1

Introduction

These lectures were delivered at the ECT*1 in Trento (Italy) in 2002 and
2003. They are addressed to physicists who wish to acquire a minimal back-
ground to understand present day attempts to model the confinement of
QCD2 in terms of dual superconductors. The lectures focus more on the
models than on attempts to derive them from QCD.

It is speculated that the QCD vacuum can be described in terms of a
Landau-Ginzburg model of a dual superconductor. Particle physicists often
refer to it as the Dual Abelian Higgs model. A dual superconductor is a
superconductor in which the roles of the electric and magnetic fields are ex-
changed. Whereas, in usual superconductors, electric charges are condensed
(in the form of Cooper pairs, for example), in a dual superconductor, mag-
netic charges are condensed. Whereas no QED3 magnetic charges have as
yet been observed, the occurrence of color-magnetic charges in QCD, and the
contention that their condensation would lead to the confinement of quarks
was speculated by various authors in the early seventies, namely in the pio-
neering 1973 paper Nielsen and Olesen [1], the 1974 papers of Nambu [2] and
Creutz [3], the 1975 papers of ’t Hooft [4], Parisi [5], Jevicki and Senjanovic
[6], and the 1976 paper of Mandelstam [7]. Qualitatively, the confinement of
quarks embedded in a dual superconductor can be understood as follows. The
quarks carry color charge (see App.D). Consider a static quark-antiquark
(qq̄) configuration in which the particles are separated by a distance R. The

1The ECT* is the European Centre for Theoretical Studies in Nuclear Physics and
Related Areas.

2QCD: quantum chromodynamics.
3QED: quantum electrodynamics.
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quark and anti-quark have opposite color-charges so that they create a static
color-electric field. The field lines stem from the positively charged particle
and terminate on the negatively charged particle. If the qq̄ pair were em-
bedded in a normal (non-superconducting) medium, the color-electric field
would be described by a Coulomb potential and the energy of the system
would vary as −e2/R where e is the color-electric charge of the quarks. How-
ever, if the qq̄ pair is embedded in a dual superconductor, the Meissner effect
will attempt to eliminate the color-electric field. (Recall that, in usual super-
conductors, the Meissner effect expels the magnetic field.) In the presence of
the color-electric charges of the quarks, Gauss’ law prevents the color-electric
field from disappearing completely because the flux of the electric field must
carry the color-electric charge from the quark (antiquark) to the antiquark
(quark). The best the Meissner effect can do is to compress the color-electric
field lines into a minimal space, thereby creating a thin flux tube which joins
the quark and the antiquark in a straight line. As the distance between the
quark and antiquark increases, the flux tube becomes longer but it maintains
its minimal thickness. The color-electric field runs parallel to the flux tube
and maintains a constant profile in the perpendicular direction. The mere
geometry of the flux tube ensures that the energy increases linearly with R
thereby creating a linearly confining potential between the quark and the
antiquark. This qualitative description hides, in fact, many problems, which
relate to abelian projection (described in Chap.4), Casimir scaling, etc. As a
result, attempts to model quark confinement in terms of dual superconduc-
tors are still speculative and somewhat ill defined.

The dual superconductor is described by the Landau-Ginzburg (Dual
Abelian Higgs) model [8]. Because the roles of the electric and magnetic
fields are exchanged in a dual superconductor, it is natural to express the
lagrangian of the model in terms of a gauge potential Bµ associated to the
dual field tensor F̄ µν = ∂µBν − ∂νBµ. Indeed, when the field tensor F is
expressed in terms of the electric and magnetic fields , as in Eq.(2.1), the
corresponding expression (2.2) of the dual field tensor F̄ µν = εµναβFαβ is

obtained by the exchange ~E → ~H and ~H → −~E of the electric and magnetic
fields. (Recall that electrodynamics is usually expressed in terms of the gauge
potential Aµ associated to the field tensor F µν = ∂µAν − ∂νAµ.) When a
system is described by the gauge potential Bµ, associated to the dual field
tensor F̄ , the coupling of electric charges (such as quarks) to the gauge field
Bµ is analogous to the problem of coupling of magnetic charges in QED to

5



the gauge potential Aµ. Such a coupling was formulated by Dirac in 1931
and 1948 [9] and it requires the use of a Dirac string. The Dirac theory of
magnetic monopoles is reviewed in Chap.2. In Sect.2.11, it is applied to the
coupling of electric charges to the gauge field Bµ associated to the dual field
tensor F̄ .

For a system consisting of a qq̄ pair, the Dirac string stems from the quark
(or antiquark) and terminates on the antiquark (or quark). The string should
not, however, be confused with the flux tube which joins the two particles
in a straight line. Indeed, as explained in Sect.2.9, the Dirac string can
be deformed at will by a gauge transformation. The latter does not modify
the flux tube, because it is formed by the electric field and the magnetic
current, both of which are gauge invariant. We refer here to the residual
U (1) symmetry which remains after the abelian gauge fixing (or projection),
discussed in Chap.4. However, as explained in Chapt.3, there is one gauge,
the so-called unitary gauge, in which the flux tube forms around the Dirac
string. Calculations of flux tubes have all been performed in this gauge.

One attempt [10] to apply the dual superconductor model to a system of
three quarks is discussed in Chap.5. Ultimately, this is the goal aimed at by
these lectures. We would like to formulate a workable model of baryons and
mesons, which would incorporate both confinement and spontaneous chiral
symmetry breaking and which could be confronted to bona fide experimental
data and not only to lattice data. Presently available models of hadrons
incorporate either confinement or chiral symmetry, but not both. It is likely
that models, such as the one described in Chap.5, will have to be implemented
by an interaction between quarks and a scalar chiral field, for which there is
also lattice evidence [11].

The model is inspired by (but not derived from) several observations made
in lattice calculations. The first is the so-called abelian dominance, which
is the observation that, in lattice calculations performed in the maximal
abelian gauge, the confining string tension σ, which defines the asymptotic
confining potential σR, can be extracted from the Abelian link variables alone
[12, 13],[14],[15],[16],[17],[18]. Abelian gauge fixing is discussed in Chap.4
both in the continuum and on the lattice.

The second observation, made in lattice calculations, is that the confining
phase of the SU (N) theory is related to the condensation of monopoles
[19, 20, 21], [22, 23]. Such a statement can only be expressed in terms of an
abelian gauge projection. The condensation of monopoles and confinement
are found to disappear at the same temperature and it does not depend on the
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chosen abelian projection [25, 22]. However, confinement may well depend on
the choice of the abelian gauge. In the abelian Polyakov gauge, for example,
monopole condensation is observed but not confinement [26]. In Chap.4, we
show how monopoles can be formed in the process of abelian projection. It
is often difficult to assess the reliability and the relevance of lattice data. For
example, on the lattice, even the free U (1) gauge theory displays a confining
phase in which magnetic monopoles are condensed [27, 28]. This confining
phase disappears in the continuum limit [29] as it should, since a U (1) gauge
theory describes a system of free photons. However, non-abelian gauge theory
is better behaved than U (1) gauge theory (it is free of Landau poles) and
lattice calculations point to the fact that, in the non-abelian theory, the
confining phase, detected by the area law of a Wilson loop, survives even in
the continuum limit.

The third observation, which favors, although perhaps not exclusively,
the dual superconductor model, is the lattice measurement of the electric
field and the magnetic current, which form the flux tube joining two equal
and opposite static color-charges, in the maximal abelian gauge [30],[35],
[31, 32, 33],[34]. They are nicely fitted by the flux tube calculated with the
Landau-Ginzburg (Abelian Higgs) model, as discussed in Sect.3.4.

The model is, however, easily criticized and it has obvious failures. For
example, it confines color charges, in particular quarks, which form the funda-
mental representation of the SU (N) group and therefore carry non-vanishing
color-charge. However, it does not confine every color source in the ad-
joint representation: for example, it would not confine abelian gluons. (Color
charges of quarks and gluons are listed in App.D.) Because it is expressed
in an abelian gauge, the model also predicts the existence of particles, with
masses the order of 1 − 2 GeV , which are not color singlets.

In addition, there is lattice evidence for competing scenarios of color
confinement, which involve the use of the maximal center gauge and center
projection, described in Sect.4.3. They are usefully reviewed in the 1998 and
2003 papers of Greensite [36, 37]. They account for the full asymptotic string
tension as well as Casimir scaling. In fact, both the monopole and center
vortex mechanisms of the confinement are supported by the results of lattice
simulations. They are related in the sense that the main part of the monopole
trajectories lie on center projected vortices [38], [39]. We do not describe the
center-vortex model of confinement in these lectures because it does not,
as yet, lead to a classical model, such as the Landau-Ginzburg (Abelian
Higgs) model. Instead, it describes confinement in terms of (quasi) randomly
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distributed magnetic fluxes in the vacuum. It is however, numerically simpler
on the lattice and flux tubes formed by both static qq̄ and 2q2q̄ have been
computed [40]. Further scenarios, such as the Gribov coulomb gauge scenario
developed by Zwanziger, Cucchieri [41, 42] and Swanson [43], and the gluon
chain model of Greensite and Thorn [44, 45] are not covered by these lectures.

The relevant mathematical identities are listed in the appendices.
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Chapter 2

The symmetry of
electromagnetism with respect
to electric and magnetic
charges

The possible existence of magnetic charges and the corresponding electro-
magnetic theory was investigated by Dirac in 1931 and 1948 [46, 9]. The
reading of his 1948 paper is certainly recommended. A useful introduction
to the electromagnetic properties of magnetic monopoles can be found in
Sect.6.12 and 6.13 of Jackson’s Classical Electrodynamics [47]. The Dirac
theory of magnetic monopoles, which is briefly sketched in this chapter, will
be incorporated into the Landau-Ginzburg model of a dual superconductor,
in order to couple electric charges, which ultimately become confined. This
will be done in Chapt.3.

2.1 The symmetry between electric and mag-

netic charges at the level of the Maxwell

equations

”The field equations of electrodynamics are symmetrical between electric
and magnetic forces. The symmetry between electricity and magnetism is,
however, disturbed by the fact that a single electric charge may occur on a
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particle, while a single magnetic pole has not been observed on a particle.
In the present paper a theory will be developed in which a single magnetic
pole can occur on a particle, and the dissymmetry between electricity and
magnetism will consist only in the smallest pole which can occur, being much
greater than the smallest charge.” This is how Dirac begins his 1948 paper
[9].

The electric and magnetic fields ~E and ~H can be expressed as components
of the field tensor F µν :

F µν =









0 −Ex −Ey −Ez

Ex 0 −Hz Hy

Ey Hz 0 −Hx

Ez −Hy Hx 0









(2.1)

They may equally well be expressed as the components of the dual field
tensor F̄ µν :

F
µν

=
1

2
εµναβFαβ =









0 −Hx −Hy −Hz

Hx 0 Ez −Ey

Hy −Ez 0 Ex

Hz Ey −Ex 0









(2.2)

where εµναβ is the antisymmetric tensor with ε0123 = 1. Thus, the cartesian
components of the electric and magnetic fields can be expressed as compo-
nents of either the field tensor F or its dual F̄ :

Ei = −F 0i =
1

2
ε0ijkF̄jk H i = −F̄ 0i = −1

2
ε0ijkFjk (2.3)

The appendix A summarizes the properties of vectors, tensors and their dual
forms. In the duality transformation F → F , the electric and magnetic fields
are interchanged as follows:

F → F ~E → ~H ~H → −~E (2.4)

The electric charge ρ and the electric current ~j are components of the
4-vector jµ:

jµ =
(

ρ,~j
)

(2.5)

Similarly, the magnetic charge ρmag and the magnetic current ~jmag are com-
ponents of the 4-vector jµ

mag :

jµ
mag =

(

ρmag,~jmag

)

(2.6)
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At the level the Maxwell equations, there is a complete symmetry between
electric and magnetic currents and the coexistence of electric and magnetic
charges does not raise problems. The equations of motion for the electric
and magnetic fields ~E and ~H are the Maxwell equations which may be cast
into the symmetric form:

∂νF
νµ = jµ ∂νF

νµ
= jµ

mag (2.7)

It is this symmetry which impressed Dirac, who probably found it upsetting
that the usual Maxwell equations are obtained by setting the magnetic cur-
rent jµ

mag to zero. The Maxwell equations can also be expressed in terms of

the electric and magnetic fields ~E and ~H. Indeed, if we use the definitions
(2.1) and (2.2), the Maxwell equations (2.7) read:

∂νF
νµ = jµ → ~∇ · ~E = ρ − ∂t

~E + ~∇× ~H = ~j

∂νF
νµ

= jµ
mag → ~∇ · ~H = ρmag − ∂t

~H − ~∇× ~E = ~jmag (2.8)

2.2 Electromagnetism expressed in terms of

the gauge field Aµ associated to the field

tensor F µν

So far so good. Problems however begin to appear when we attempt to ex-
press the theory in terms of vector potentials, alias gauge potentials. Why
should we? In the very words of Dirac [9]: ”To get a theory which can be
transferred to quantum mechanics, we need to put the equations of motion
into a form of an action principle, and for this purpose we require the elec-
tromagnetic potentials.”

This is usually done by expressing the field tensor F µν in terms of a vector

potential Aµ =
(

φ, ~A
)

:

F µν = ∂µAν − ∂νAµ ~E = −∂t
~A− ~∇φ ~H = ~∇× ~A (2.9)

However, this expression leads to the identity1 ∂νF
νµ

= 0 which contradicts
the second Maxwell equation ∂νF

νµ
= jµ

mag. The expression F = ∂ ∧ A

1The identity ∂ · ∂ ∧ A = 0 is often referred to in the literature as a Bianchi identity.
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therefore precludes the existence of magnetic currents and charges. In elec-
tromagnetic theory, this is a bonus which comes for free since no magnetic
charges have ever been observed. Dirac, however, was apparently more se-
duced by symmetry than by this experimental observation.

Let us begin to use the compact notation, defined in App.A, and in which
∂ ∧ A represents the antisymmetric tensor (∂ ∧ A)µν = ∂µAν − ∂νAµ. The
reader is earnestly urged to familiarize himself with this notation by checking
the formulas given in the appendix A, lest he become irretrievably entangled
in endless and treacherous strings of indices.

Dirac proposed to modify the expression F = ∂ ∧ A by adding a term
−Ḡ:

F = ∂ ∧ A− Ḡ F̄ = ∂ ∧A+G (2.10)

where Gµν = −Gνµ is an antisymmetric tensor field2. The latter satisfies the
equation:

∂ ·G = jmag (2.11)

The field tensor F µν then satisfies both Maxwell equations, namely: ∂ ·F = j
and ∂ · F̄ = jmag. In the expressions above, the bar above a tensor denotes
the dual tensor. For example, Ḡµν = 1

2
εµναβG

αβ (see App.A). For reasons
which will become apparent in Sect. 2.5, we shall refer to the antisymmetric
tensor Gµν as a Dirac string term.

The string term Gµν is not a dynamical variable. It simply serves to
couple the magnetic current jµ

mag to the system. It acts as a source term.
Note that both G and the equation ∂ ·G = jmag are independent of the gauge
potential Aµ.

An equation for Aµ is provided by the Maxwell equation ∂ ·F = j. When
the field tensor F has the form (2.10), the equation reads:

∂ · (∂ ∧ A) − ∂ · Ḡ = j (2.12)

The Maxwell equation (2.12) may be obtained from an action principle. In-
deed, since the string term G does not depend on the gauge field A, the
variation of the action:

Ij,jmag
(A) =

∫

d4x

(

−1

2
F 2 − j ·A

)

=

∫

d4x

(

−1

2

(

(∂ ∧ A) − Ḡ
)2 − j ·A

)

(2.13)

2Remember that the dual of F̄ is −F !
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with respect to the gauge field Aµ, leads to the equation (2.12). The action
(2.13) is invariant with respect to the gauge transformation A → A + (∂α)
provided that ∂ · j = 0.

The source term G has to satisfy two conditions. The first is the equation
∂ · G = jmag. The second is that ∂ · Ḡ 6= 0. If the second condition is not
satisfied, the magnetic current decouples from the system. This is the reason
why G cannot simply be expressed as G = ∂ ∧B, in terms of another gauge
potential Bµ.3 String solutions (see Sect.2.4) of the equation ∂ · G = jmag

are constructed in order to satisfy the condition ∂ · Ḡ 6= 0.
The string term Gµν can be expressed in terms of two vectors, which we

call ~Est and ~Hst:

~H i
st = −G0i =

1

2
ε0ijkḠjk = ~Ei

st = −Ḡ0i = −1

2
ε0ijkGjk (2.14)

The equation ∂ · F̄ = ∂ ·G = jmag then translates to:

~∇ · ~Hst = ρmag − ∂t
~Hst + ~∇× ~Est = ~jmag (2.15)

Let us express the electric and magnetic fields ~E and ~H in terms of the
vector potential and the string term. We define:

Aµ =
(

φ, ~A
)

(2.16)

When the field tensor F has the form (2.10), the electric and magnetic fields
can be obtained from (2.3), with the result:

~E = −∂t
~A− ~∇φ+ ~Est

~H = ~∇× ~A+ ~Hst (2.17)

and we have:

− 1

2
F 2 = −1

2

(

∂ ∧A− Ḡ
)2

=
1

2

(

−∂t
~A− ~∇χ− ~Est

)2

− 1

2

(

~∇× ~A + ~Hst

)2

(2.18)

• Exercise: Consider the following expression of the field tensor F :

F = ∂ ∧ A− ∂ ∧B (2.19)

3The Zwanziger formalism, discussed in Sect.3.11, does in fact make use of two gauge
potentials.
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in terms of two potentials Aµ and Bµ. Show that F will satisfy the
Maxwell equations ∂ · F = j and ∂ · F̄ = jmag provided that the two
potentials A and B satisfy the equations:

∂ · (∂ ∧A) = j ∂ · (∂ ∧ B) = jmag (2.20)

Check that the variation of the action:

Ij,jmag
(A,B) =

∫

d4x

(

−1

2
F 2 − j ·A + jmag · B

)

(2.21)

with respect to A and B leads to the correct Maxwell equations. What
is wrong with this suggestion? A possible expression of the field tensor
in terms of two potentials is given in a beautiful 1971 paper of Zwanziger
[48] (see Sect.3.11).

2.3 The current and world line

of a charged particle.

When we describe the trajectory of a point particle in terms of a time-
dependent position ~R (t), the Lorentz covariance is not explicit because t

and ~R are different components of a Lorentz 4-vector. The function ~R (t)
describes the trajectory in 3-dimensional euclidean space. Lorentz covari-
ance can be made explicit if we embed the trajectory in a 4-dimensional
Minkowski space, where it is described by a world line Zµ (τ), which is a
4-vector parametrized by a scalar parameter τ . The parameter τ may, but
needs not, be chosen to be the proper-time of the particle. This is how Dirac
describes trajectories of magnetic monopoles in his 1948 paper and much of
the subsequent work is cast in this language, which we briefly sketch below.

Let Zµ (τ) be the world line of a particle in Minkowski space. A point

τ on the world line Zµ (τ) =
(

T (τ) , ~R (τ)
)

indicates the position ~R (τ) of

the particle at the time T (τ) ,as illustrated in Fig2.1. The current jµ (x)
produced by a point particle with a magnetic charge g can be written in the
form of a line integral:

jµ (x) = g

∫

L

dZµδ4 (x− Z) (2.22)
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along the world line of the particle. A more explicit form of the current is:

jµ (x) = g

∫ τ1

τ0

dτ
dZµ

dτ
δ4 (x− Z (τ)) (2.23)

where τ0 and τ1 denote the extremities of the world line, which can, but need
not, extend to infinity.

T(τ ) R(τ), )(µ(τ )Z =

τ

τ 1

0

Figure 2.1: The world line of a particle. For any value of τ , the 4-vector
Zµ (τ) indicates the position ~R (τ) of the particle at the time T (τ).

In order to exhibit the content of the current (2.23), we express it in terms
of a density ρ and a current ~j:

jµ =
(

ρ,~j
)

(2.24)

Let xµ = (t, ~r). The current (2.23), at the position ~r and at the time t, has
the more explicit form:

jµ (t, ~r) = g

∫ τ1

τ0

dτ
dZµ

dτ
δ (t− T (τ)) δ3

(

~r − ~R (τ)
)

(2.25)

The expression (2.23) of the current is independent of the parametrization
Zµ (τ) which is chosen to describe the world line. We can choose τ = T . The
density ρ (t, ~r) is then:

ρ (t, ~r) = j0 (t, ~r) = g

∫ τ1

τ0

dτ
dT

dτ
δ (t− T (τ)) δ

(

~r − ~R (τ)
)
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= g

∫ τ1

τ0

dτδ (t− τ) δ
(

~r − ~R (τ)
)

= gδ
(

~r − ~R (t)
)

(2.26)

and the current ~j (t, ~r) is:

~j (t, ~r) = g

∫ τ1

τ0

dτ
d~R

dτ
δ (t− τ) δ

(

~r − ~R (τ)
)

= g
d~R

dt
δ
(

~r − ~R (t)
)

(2.27)

The expressions (2.26) and (2.27) are the familiar expressions of the density
and current produced by a point particle with magnetic charge g.

2.4 The world sheet swept out by a Dirac

string in Minkowski space

The Dirac string, which is added to the field tensor F µν in the expression
(2.10), is an antisymmetric tensor Gµν (x) which satisfies the equation:

∂ ·G = j (2.28)

As stated above, not any solution of this equation will do. For example,
if we attempted to express the string term in terms of a potential Bµ by
writing, for example, G = ∂ ∧ B, we would have ∂ · Ḡ = 0 and the string
term would decouple from the action (2.13). For this reason, string solutions
of the equation ∂ ·G = jmag have been proposed.

The string solution can be expressed as a surface integral over a world-
sheet Zµ (τ, s):

Gµν (x) = g

∫

dτds
∂ (Zµ, Zν)

∂ (s, τ)
δ4 (x− Z) (2.29)

The world sheet Zµ (τ, s) is parametrized by two scalar parameters τ and s
and:

∂ (Zµ, Zν)

∂ (s, τ)
=
∂Zµ

∂s

∂Zν

∂τ
− ∂Zµ

∂τ

∂Zν

∂s
(2.30)

is the Jacobian of the parametrization. A point (τ, s) on the world sheet

Zµ (τ, s) indicates the position ~R (τ, s) at the time T (τ, s) of a particle on
the world sheet. The expression (2.29) for the string G is independent of
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the parametrization of the world sheet Zµ (τ, s) and it can be written in a
compact form as a surface integral over the world sheet Z:

Gµν (x) = g

∫

S

dσµν δ (x− Z) (2.31)

The surface element is:

dσµν = dτds
∂ (Zµ, Zν)

∂ (s, τ)
= dτds

(

∂Zµ

∂s

∂Zν

∂τ
− ∂Zµ

∂τ

∂Zν

∂s

)

(2.32)

,s0τZµ( )

,s1τ(Z
µ

)

s ,( )τ

s ,( )τ

s ,( )τ

s ,( )τ

0 0

0 1

1 1

1 0

world line of the positively charged particle

world line of the negatively charged particle

Dirac string

Figure 2.2: The world sheet Zµ (s, τ) swept out by a Dirac string, which
stems from a particle with magnetic charge g and terminates on a particle
with magnetic charge −g. The world line of the positively charged particle
is the segment joining the points (s0, τ0) and (s0, τ1). The world line of the
negatively charged particle is the joins the points (s1, τ0) and (s1, τ1).

Figure 2.2 is an illustration of the world sheet which is swept out by a
Dirac string which stems from a particle with magnetic charge g and termi-
nates on a particle with magnetic charge −g. The word line of the positively
charged particle is the border of the world sheet extending from the point
(s0, τ0) to the point (s0, τ1). The world line of the negatively charged parti-
cle is the border of the world sheet extending from the point (s1, τ0) to the
point (s1, τ1). For any value of τ , we can view the string as a line on the
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world sheet, which stems from the point (s0, τ) on the world line of the posi-
tively charged particle to the point (s1, τ) of the world line of the negatively
charged particle (see Fig.2.1). Often authors choose to work with a world
sheet with a minimal surface. This is equivalent to the use of straight line
Dirac strings. An observable, which is independent of the shape of the Dirac
string, is independent of the shape of the surface which defines the world
sheet. If the system is composed of a single magnetic monopole, that is, of
a single particle with magnetic charge g, then the attached string extends
to infinity. The corresponding world sheet has s1 → ∞ and it becomes an
infinite surface.

Let us check that the string form (2.29) satisfies the equation ∂ ·G = j:

∂αG
αµ (x) = g

∫

S

dτds

(

∂Zα

∂s

∂Zµ

∂τ
− ∂Zα

∂τ

∂Zµ

∂s

)

∂

∂xα
δ (x− Z)

= −g
∫

S

dτds

(

∂Zα

∂s

∂Zµ

∂τ
− ∂Zα

∂τ

∂Zµ

∂s

)

∂

∂Zα
δ (x− Z) (2.33)

We have:
∂

∂τ
δ (x− Z) =

∂Zα

∂τ

∂

∂Zα
δ (x− Z) (2.34)

and a similar expression holds for ∂
∂s
δ (x− Z). We obtain thus:

∂αG
αµ (x) = −g

∫

S

dτds

(

∂Zµ

∂τ

∂

∂s
δ (x− Z) − ∂Zµ

∂s

∂

∂τ
δ (x− Z)

)

(2.35)

We can use Stoke’s theorem which states that, for any two functions U (τ, s)
and V (τ, s), defined on the world sheet, we have:

∫

S

(

∂U

∂τ

∂V

∂s
− ∂U

∂s

∂V

∂τ

)

=

∮

C

U

(

∂V

∂s
ds+

∂V

∂τ
dτ

)

(2.36)

where the line integral is taken along the closed line C which borders the
surface S. A more compact form of Stoke’s theorem is:

∫

S

∂ (U, V )

∂ (τ, s)
=

∮

C

UdV (2.37)

We apply the theorem to the functions U = δ4 (x− Z) and V = Zµ so as to
obtain:

∂αG
αµ (x) = g

∮

C

δ (x− Z)

(

∂Zµ

∂τ
dτ +

∂Zµ

∂s
ds

)

= g

∮

C

dZµδ (x− Z)

(2.38)

18



We can choose, for example, the world sheet to be such that the path C
begins at the point (s0, τ0) and passes successively through the points (s0, τ1),
(s1, τ1), (s1, τ0) before returning to the point (s0, τ0). Then if the world line
of the charged particle begins at (s0, τ0) and ends at (s0, τ1), the other points
being at infinity, the expression (2.38) reduces to:

∂αG
αµ (x) = g

∫ τ1

τ0

dτ
dZµ

dτ
δ4 (x− Z (τ)) (2.39)

which, in view of (2.23), is the current jµ (x) produced by the magnetically
charged particle.

2.5 The Dirac string joining equal and oppo-

site magnetic charges

The string term Gµν (x) can be expressed in terms of the two vectors ~Hst and
~Est defined in (2.14). We can use (2.29) to obtain an explicit expression for
these vectors. Thus:

H i
st (t, ~r) = Gi0 (t, ~r) = g

∫

S

dτdsδ (t− T ) δ3

(

~r − ~R
)

(

∂ ~Ri

∂s

∂T

∂τ
− ∂ ~Ri

∂τ

∂T

∂s

)

For a given value of s, we can choose τ = T (τ, s) in which case we have
∂T
∂τ

= 1 and δτ
δs

= 0. The string term ~Hst reduces to:

~Hst (t, ~r) = g

∫

L

ds
∂ ~R

∂s
δ
(

~r − ~R (t)
)

= g

∫

L

d~Rδ
(

~r − ~R (t)
)

(2.40)

The expression for ~Est is:

Ei
st (t, ~r) =

1

2
ε0ijkGjk = ε0ijkg

∫

S

dτds δ (t− T ) δ3

(

~r − ~R
)

(

∂ ~Rj

∂s

∂ ~Rk

∂τ

)

(2.41)
so that:

~Est (t, ~r) = g

∫

L

ds
∂ ~R

∂s
× ∂ ~R

∂t
δ3

(

~r − ~R (t, τ)
)

= g

∫

L

d~R× ∂ ~R

∂t
δ
(

~r − ~R (t)
)

(2.42)
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The string terms ~Hst and ~Est satisfy the equations (2.15). Let us calculate
:

~∇r · ~Hst (t, ~r) = g

∫

L

d~R · ~∇rδ
(

~r − ~R
)

= −g
∫

L

d~R · ~∇Rδ
(

~r − ~R
)

(2.43)

Now, for any function f
(

~R
)

we have d~R · ~∇Rf
(

~R
)

= f
(

~R + δ ~R
)

−f
(

~R
)

.

Let ~R1 (t) and ~R2 (t) be the points where the string L originates and termi-
nates. We see that the expression (2.43) is equal to:

~∇r · ~Hst (t, ~r) = gδ
(

~r − ~R1 (t)
)

− gδ
(

~r − ~R2 (t)
)

(2.44)

The right hand side is equal to the magnetic density of a magnetic charge g
located at ~R1 and a magnetic charge −g located at ~R2. For such a system,
we can choose a string which stems from the monopole g and terminates at
the monopole −g.

2.6 Dirac strings with a constant orientation

Many calculations are made with the following solution to the equation ∂·G =
jmag, namely:

G =
1

n · ∂n ∧ jmag Gµν =
1

n · ∂
(

nµjν
mag − nνjµ

mag

)

(2.45)

where nµ is a given fixed vector and n · ∂ = nµ∂
µ. We can check that this

form also satisfies the equation ∂ ·G = jmag :

∂αG
αµ =

1

n · ∂ ∂α

(

nαjµ
mag − nµjα

mag

)

= jµ
mag (2.46)

where we assumed that the current jmag is conserved: ∂µj
µ
mag = 0. The

solution (2.45) is used in many applications because it is simple and we shall
call it a straight line string.

Let us choose nµ to be space-like:

nµ = (0, ~n) n · ∂ = ~n · ~∇ (2.47)

The string terms ~Est and ~Hst, defined in (2.14) are then:

~Est = − 1

~n · ~∇
~n×~jmag, ~Hst =

~n

~n · ~∇
ρmag (2.48)
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• Exercise: Use (A.80) to check explicitly that the form (2.48) of the
string terms satisfies the form (2.15) of the equation ∂ ·G = jmag.

Consider first the case of a single magnetic monopole sitting at the point
~R1. The monopole is described by the following magnetic current jµ

mag:

jµ
mag =

(

ρmag ,~jmag

)

ρmag = gδ
(

~r − ~R1

)

~jmag = 0 (2.49)

The equations (2.48) show that:

~∇ · ~Hst = ρmag = gδ
(

~r − ~R1

)

~Est = 0 (2.50)

The Fourier transform of ~Hst is:

~Hst

(

~k
)

= g

∫

d3r ei~k·~r ~n

~n · ~∇
δ
(

~r − ~R1

)

= ig
~n

~n · ~k
ei~k·~R1 (2.51)

Let us choose the z-axis parallel to ~n so that ~n

~n·~k
= ~e(z)

1
kz

where ~e(z) is a unit

vector pointing in the z direction. We then have ~Hst

(

~k
)

= ig~e(z)
1
kz
ei~k·~R1 .

The inverse Fourier transform is:

~Hst (~r) =
ig

(2π)3~e(z)

∫

d3k e−i~k(·~r−~R1) 1

kz

=
g

(2π)3~e(z)

∫

d3k e−i~k·(~r−~R1)
∫ ∞

0

dz′eikzz′

(2.52)

Let us define a vector ~R (z′) = (X1, Y1, Z1 + z′). We have:

~k ·
(

~r − ~R1

)

− kzz
′ = ~k ·

(

~r − ~R (z′)
)

d~R (z′) = ~e(z)dz
′ (2.53)

so that:

~Hst (~r) = ~e(z)g

∫ ∞

0

dz′ δ
(

~r − ~R (z′)
)

= g

∫

L

d~R δ
(

~r − ~R
)

(2.54)

where the path L starts at the point ~R1 and runs to infinity parallel to the
positive z-axis.

Thus, when the density ρ (~r) represents a single monopole at the point
~R1, the straight line solution (2.48) is identical to a Dirac string which stems
from the monopole and continues to infinity in a straight line parallel to the
vector ~n. If the system consists of two equal and opposite magnetic charges,
located respectively at positions ~R1 and ~R2, then the straight line solution
(2.48) represents two strings emanating from the charges and running to
infinity parallel to the z-axis. Straight line strings, such as (2.48) with a
fixed vector nµ, are used in the Zwanziger formalism discussed in Sect.3.11.
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2.7 The vector potential ~A in the vicinity of

a magnetic monopole

Let us calculate the vector potential in the presence of the magnetic monopole.
Since j = 0, the equation (2.12) for the vector potential Aµ is:

∂ · (∂ ∧ A) − ∂ · Ḡ = 0 (2.55)

Let us write:
Aµ =

(

φ, ~A
)

(2.56)

The equation (2.55) can then be broken down to:

~∇ ·
(

−~∇φ− ∂t
~A
)

= 0

∂t

(

∂t
~A+ ~∇φ

)

+ ~∇×
(

~∇× ~A
)

= ~∇× ~Hst (2.57)

For a static monopole, it is natural to seek a static (time-independent) solu-

tion. We can choose φ = 0. The equation for ~A reduces to:

~∇×
(

~∇× ~A
)

= ~∇× ~Hst (2.58)

Let us distinguish the longitudinal and transverse parts of the vector poten-
tial, respectively ~AL and ~AT :

~AL =
1

∇2
~∇
(

~∇ · ~A
)

~AT = ~A− 1

∇2
~∇
(

~∇ · ~A
)

~∇× ~AL = 0 ~∇· ~AT = 0

(2.59)

The equation (2.58) determines only the transverse part ~AT of the vec-

tor potential ~A because ~∇ × ~A = ~∇ × ~AT . It leaves the longitudinal
part undetermined. Since the transverse part has ~∇ · ~AT = 0, we have
~∇×

(

~∇× ~AT

)

= −∇2 ~AT . Substituting for ~Hst the string (2.54), the expres-

sion for ~AT becomes:

−∇2 ~AT = g~∇×
∫

L

d~R δ
(

~r − ~R
)

(2.60)

At this point, a useful trick consists in using the identity (2.69) to rewrite
the δ-function. We obtain thus:

∇2 ~AT =
g

4π
~∇×

∫

L

d~R ∇2 1
∣

∣

∣
~r − ~R

∣

∣

∣

(2.61)
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so that we can take:

~AT (~r) =
g

4π
~∇×

∫

L

d~R
1

∣

∣

∣
~r − ~R

∣

∣

∣

(2.62)

In a gauge such that ~∇ · ~A = 0, the expression above becomes an expression
for ~A, but no matter. The expression (2.62) gives the vector potential ~AT

for a Dirac string defined by the path L.
An analytic expression for ~AT may be obtained when the path L is a

straight line, as, for example the straight line string (2.54) which runs along
the positive z-axis. In this case the expression (2.62) reads:

~AT (~r) =
g

4π
~∇× ~e(z)

∫ ∞

0

dz′
1

√

ρ2 + (z − z′)2
(2.63)

In cylindrical coordinates (Appendix A.6.2), ~AT can be expressed in the form:

~AT (~r) = ~e(θ)A (ρ, z) (2.64)

and (A.105) shows that this form is consistent with ~∇ · ~AT = 0. Using again
(A.106) we obtain:

~AT (~r) = − g

4π
~e(θ)

∫ ∞

0

dz′
∂

∂ρ

1
√

ρ2 + (z − z′)2
(2.65)

After performing the derivative with respect to ρ, the integral over z′ becomes
analytic and we obtain the vector potential in the form:

~AT (ρ, θ, z) = ~e(θ)
g

4π

1

ρ

(

1 +
z

√

(ρ2 + z2)

)

(2.66)

In spherical coordinates (Appendix A.6.3), the vector potential has the form:

~AT (ρ, θ, z) = ~e(ϕ)
g

4π

1 + cos θ

r sin θ
(2.67)

We shall see in Sect. 4.1 that the abelian gluon field acquires such a form in
the vicinity of points where gauge fixing becomes undetermined.
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• Exercise: Use (A.105) to check that (2.66) is transverse: ~∇ · ~AT = 0.
Use (A.106) to calculate the magnetic field from (2.66). Check that,

at all points which are not on the positive z-axis (where ~Hst = 0), the
magnetic field is equal to:

~H =
g

4πr2

~r

r
(2.68)

• Exercise: Calculate the Coulomb potential produced by a charge sit-
uated at the point ~r = ~R and deduce the identity:

δ
(

~r − ~R
)

= −∇2 1

4π
∣

∣

∣
~r − ~R

∣

∣

∣

(2.69)

2.8 The irrelevance of the shape of the Dirac

string

Let us calculate the electric and magnetic fields ~E and ~H generated by the
monopole. They are given by the field tensor (2.1). There are two ways
to calculate them. The complicated, although instructive, way consists in
starting from the expression (2.10) of the field tensor in terms of the vector
potential and the string term. The dual string term Ḡ is then:

Ei
st = −Ḡ0i = 0 H i

st = ε0ijkḠij (2.70)

If we use (2.1) , the electric and magnetic fields become:

~E = 0 ~H = ~∇× ~A+ ~Hst (2.71)

Now ~∇× ~A can be calculated from (2.62):

~∇r × ~A = − g

4π

∫

L

~∇r ×



~∇r × d~R
1

∣

∣

∣
~r − ~R

∣

∣

∣



 (2.72)

We use ~∇×
(

~∇× ~a
)

= ~∇
(

~∇ · ~a
)

−∇2~a to calculate:

~∇r ×




~∇r × d~R

1
∣

∣

∣
~r − ~R

∣

∣

∣



 = ~∇r




~∇r · d~R

1
∣

∣

∣
~r − ~R

∣

∣

∣



− d~R ∇2
r

1
∣

∣

∣
~r − ~R

∣

∣

∣
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= −~∇




~∇R · d~R 1

∣

∣

∣
~r − ~R

∣

∣

∣



+ 4πd~R δ
(

~r − ~R
)

(2.73)

Substituting back into the expression for ~∇× ~A, we obtain:

~∇r × ~A = − g

4π
~∇1

r
− g

∫

L

d~R δ
(

~r − ~R
)

=
g

4πr2
~e(r) − ~Hst

(

~e(r) =
~r

r

)

(2.74)
where we used (2.54). Substituting these results into (2.71) we find that the
electric and magnetic fields are:

~E = 0 ~H = ~∇× ~A + ~Hst =
g

4πr2
~e(r) (2.75)

The fields (2.75) could, of course, also have been obtained by simply
solving the Maxwell equations (2.8) with the magnetic current (2.49), without
appealing to the Dirac string. We have calculated them the hard way in order
to show that the string term, which breaks rotational invariance, does not
contribute to the electric and magnetic fields. As a result, the trajectory
of an electrically or magnetically charged particle, flying by, will not feel be
Dirac string. However, we shall see that the string term can modify the
phase of the wavefunction of, say, an electron flying by, and this effect leads
to Dirac’s charge quantization.

• Exercise: Start from the action (2.13) and derive an expression for
the energy of the system. Show that is does not depend on the Dirac
string term.

• Exercise: Equation (2.58) states that ~∇ ×
(

~∇× ~A
)

= −~∇ × ~Hst.

What would we have missed if we had concluded that ~∇× ~A = − ~Hst ?

2.9 Deformations of Dirac strings and charge

quantization

Although the electric and magnetic fields are independent of the string term,
the vector potential is not. What happens to the vector potential if we
deform the Dirac string? Let us show that a deformation of the Dirac string
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is equivalent to a gauge transformation. This is, of course, why the magnetic
field is not affected by the string term.

The vector potential is given by (2.62). Let us deform only a segment of
the path, situated between two points A and B on the string. The difference
δ ~A (~r) between the vector potentials, calculated with the two different paths,
is the contour integral:

δ ~A (~r) = − g

4π
~∇×

∫

C

d~R
1

∣

∣

∣
~r − ~R

∣

∣

∣

(2.76)

where the contour C follows the initial path from A to B and then continues
back from B to A along the deformed path, as shown on Fig.2.3. Using the
identity (A.94), we can transform the contour integral into an integral over
a surface S whose boundary is the path C:

δ ~A (~r) = − g

4π
~∇×

∫

S

d~s× ~∇R

1
∣

∣

∣
~r − ~R

∣

∣

∣

= − g

4π
~∇×



~∇×
∫

S

d~s
1

∣

∣

∣
~r − ~R

∣

∣

∣





(2.77)

Using the identity ~∇×
(

~∇× ~a
)

= ~∇
(

~∇ · ~a
)

−∇2~a, we obtain:

δ ~A (~r) = − g

4π
~∇





∫

S

d~s · ~∇ 1
∣

∣

∣
~r − ~R

∣

∣

∣



 +
g

4π
∇2





∫

S

d~s
1

∣

∣

∣
~r − ~R

∣

∣

∣





=
g

4π
~∇





∫

S

d~s · ~∇R

1
∣

∣

∣
~r − ~R

∣

∣

∣



− g

∫

S

d~s δ
(

~r − ~R
)

(2.78)

The second term vanishes at any point ~r not on the surface and can be
dropped. The first term is the gradient of the solid angle Ω, subtended by
the surface S, when viewed from the point ~r:

δ ~A (~r) =
g

4π
~∇





∫

S

d~s · ~∇R

1
∣

∣

∣
~r − ~R

∣

∣

∣



 = − g

4π
~∇
∫

S

d~s·
(

~r − ~R
) 1
∣

∣

∣
~r − ~R

∣

∣

∣

3 = − g

4π
~∇Ω (~r)

(2.79)

To see why, consider first a very small surface δ~s, such that
∣

∣

∣
~r − ~R

∣

∣

∣
remains

essentially constant. Then δ~s ·
(

~r − ~R
)

1

|~r−~R|3 = 1

|~r−~R|2
(

δ~s · ~r−~R

|~r−~R|

)

= δΩs.
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Figure 2.3: The effect on the vector potential of deforming a Dirac string.

27



A finite surface S can be decomposed into small surfaces bounded by small
contours which overlap (and therefore cancel each other) everywhere except
on the boundary of the surface, that is, on the path C. The result (2.79)
follows.

The expression (2.79) shows that δ ~A is a gradient. The deformation

of the string therefore adds a gradient to the vector potential ~A and this
corresponds to a gauge transformation. A deformation of the Dirac string
can therefore be compensated by a gauge transformation.

This is, however, only true at points which do not lie on the surface S.
Indeed, the solid angle Ω (~r) is a discontinuous function of ~r. The vector

~r − ~R changes sign as the point ~r crosses the surface. If the point ~r lies
close to and on one side of the surface S (the shaded area in Fig. 2.3), the
solid angle Ω (~r) is equal to 2π (half a sphere). As soon as point ~r crosses
the surface, the solid angle switches to −2π. Thus the solid angle Ω (~r)
undergoes a discontinuous variation of 4π as the point crosses the surface
S. As a result, the gauge transformation which compensates a deformation
of the Dirac string is a singular gauge transformation. This point will be
further discussed in Sect. 3.3.2.

Consider the wavefunction ψ (~r) of an electron. (We consider an electron
because it is a particle with the smallest observed electric charge.) When

the vector potential undergoes a gauge transformation ~A → ~A− g

4π
~∇Ω, the

electron wavefunction undergoes the gauge transformation ψ → eie gΩ

4π ψ. This
means that, on either side of the surface S, the electron wavefunction differs

by a phase eie gΩ

4π = eieg. This would make the Dirac string observable, unless
we impose the condition:

eg = 2nπ (2.80)

where n is an integer. The expression (2.80) is the charge quantization con-
dition proposed by Dirac. In his own words, ”the mere existence of one
[magnetic] pole of strength g would require all electric charges to be quan-
tized in units of 2πn/g and similarly, the existence of one [electric] charge
would require all [magnetic] poles to quantized. The quantization of electric-
ity is one of the most fundamental and striking features of atomic physics,
and there seems to be no explanation of it apart from the theory of poles.
This provides some grounds for believing in the existence of these poles”4

[9]. This was written in 1948. Dirac used a different argument to prove

4In the 1948 paper of Dirac, the quantization condition is stated as eg = 1

2
n~c. Ex-

cepting the use of units ~ = c = 1, the charge e defined by Dirac is equal to 4π times the
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the quantization rule (2.80). The proof given above is taken from Chap. 6
of Jackson’s Classical Electrodynamics [47]. There have been many other
derivations [48, 49]. For a late 2002 reflection of Jackiw on the subject, see
reference [50].

The discontinuity of the solid angle Ω (~r) implies that, on the surface S,

we have ~∇ ×
(

~∇Ω
)

6= 0, so that, for example, (∂x∂y − ∂y∂x)Ω 6= 0. To

see this, consider the line integral
∮

L

(

~∇Ω
)

· d~l taken along a path L which

crosses the surface S (the shaded area on Fig. 2.3). The integral is, of course,
equal to the discontinuity of Ω across the surface S. It is therefore equal to
4π. However, in view of Stoke’s theorem (A.93, we have:

∮

L

(

~∇Ω
)

· d~l =

∫

S(L)

d~s ·
(

~∇×
(

~∇Ω
))

= 4π (2.81)

where S (L) is the surface bounded by the path L. It follows that ~∇ ×
(

~∇Ω
)

6= 0 on the surface S.

2.10 The way Dirac originally argued for the

string

In his 1948 paper [9], Dirac had an elegant way of conceiving the string
term in order to accommodate magnetic monopoles. He first noted that the
relation Fµν = ∂µAν − ∂νAµ implied the absence of magnetic charges. In an
attempt to preserve this relation as far as possible, he argued as follows. If
the field tensor had the form Fµν = ∂µAν − ∂νAµ, then the magnetic field

would be ~H = ~∇ × ~A. The flux of the magnetic field through any closed
surface S would then vanish because of the divergence theorem (A.90):

∫

S

~H.d~s =

∫

S

(

~∇× ~A
)

.d~s =

∫

V

d3r ~∇.
(

~∇× ~A
)

= 0 (2.82)

where V is the volume enclosed by the surface S and d~s a surface element
directed outward normal to the surface. However, if the surface S encloses

charge we use in this paper. For example, Dirac writes the Maxwell equation ∂ · F = 4πj

whereas we write it as ∂ · F = j. The quotation of Dirac’s paper is modified so as to take
this difference into account.
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a magnetic monopole of charge g, then the Maxwell equation ~∇. ~H = gδ (~r)
states that the total magnetic flux crossing the surface S should equal the
magnetic charge g of the monopole:

∫

S

~H.d~s =

∫

V

d3r ~∇. ~H =

∫

V

d3r gδ (~r) = g (2.83)

Dirac concluded that ”the equation Fµν = ∂µAν −∂νAµ must then fail some-
where on the surface S” and he assumed that it fails at only one point on the
surface S. ”The equation will then fail at one point on every closed surface
surrounding the magnetic monopole, so that it will fail on a line of points”,
which he called a string. ”The string may be any curved line, extending from
the pole to infinity or ending at another monopole of equal and opposite
strength. Every magnetic monopole must be at the end of such a string.”
Dirac went on to show that the strings are unphysical variables which do not
influence physical phenomena and that they must not pass through electric
charges. He therefore replaced the expression ~H = ~∇× ~A, by the modified
expression:

~H = ~∇× ~A+ ~Hst (2.84)

• Exercise: Try the formulate the theory in terms of two strings, each
one carrying a fraction of the flux of the magnetic field. Under what
conditions can a monopole be attached to two strings?

2.11 Electromagnetism expressed in terms of

the gauge field Bµ associated to the dual

field tensor F̄ µν

The scheme developed in Sect. 2.2 is useful when a model action is expressed
in terms of the vector potential Aµ related to the field tensor F = ∂ ∧A− Ḡ
and when magnetic charges and currents are present. We shall however be
interested in the Landau-Ginzburg model of a dual superconductor, which
is expressed in terms of the potential Bµ associated to the dual tensor F̄ µν

and in which (color) electric charges are present. We cannot write the dual
field tensor in the form F̄ = ∂ ∧ B because that would imply that ∂ · F =
−∂ · ∂ ∧ B = 0, which would preclude the existence of electric charges. The

30



way out, of course, is to modify the expression of F̄ µν by adding a string
term Ḡµν and writing the dual field tensor in the form:

F̄ = ∂ ∧ B + Ḡ F = −∂ ∧ B +G (2.85)

We require the string term G to be independent of B and to satisfy the
equation:

∂ ·G = j (2.86)

Note that, in the expression (2.85), the string term G is added to the field
tensor F , whereas, in the Dirac formulation (2.10), the string term is added
to the field tensor F̄ . The roles of F and F̄ are indeed interchanged when
we express electromagnetism in terms of the gauge field Bµ.

This way, the first Maxwell equation ∂ · F = ∂ · G = j is satisfied inde-
pendently of the field Bµ. The latter is determined by the second Maxwell
equation ∂ · F̄ = jmag, namely:

∂ · (∂ ∧ B) + ∂ · Ḡ = jmag (2.87)

where jµ
mag is a magnetic current, which in the dual Landau-Ginzburg model,

is provided by a gauged complex scalar field. The equation for Bµ may be
obtained from the variation of the action:

Ij,jmag
(B) =

∫

d4x

(

−1

2
F̄ 2 − jmag · B

)

=

∫

d4x

(

−1

2

(

∂ ∧B + Ḡ
)2 − jmag · B

)

(2.88)
with respect to the gauge field Bµ. The action (2.88) is invariant under the
gauge transformation B → B + (∂β) provided that ∂ · jmag = 0.

The source term G has to satisfy two conditions. The first is the equation
∂ ·G = j. The second is: ∂ · Ḡ 6= 0. Otherwise, the electric current decouples
from the system. String solutions satisfy the second condition, whereas a
form, such as G = ∂ ∧ A does not.

We define:

Bµ =
(

~B, χ
)

∂µ =
∂

∂xµ

=
(

∂t,−~∇
)

jµ =
(

ρ,~j
)

(2.89)

We can express the string term Gµν and its dualG
µν

in terms of two euclidean
3-vectors ~Est and ~Hst in the same way as the field tensor F µν is expressed in
terms of the electric and magnetic fields. In analogy with (2.3) we define:

Ei
st = −G0i =

1

2
ε0ijkḠjk H i

st = −Ḡ0i = −1

2
ε0ijkGjk (2.90)
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Be careful not to confuse these definitions with the definitions (2.14)!
With a field tensor of the form (2.85), the electric and magnetic fields can

be obtained from (2.3) with the result:

~E = −~∇× ~B + ~Est
~H = −∂t

~B − ~∇χ + ~Hst (2.91)

The equation ∂ ·G = j translates to:

~∇ · ~Est = ρ − ∂t
~Est + ~∇× ~Hst = ~j (2.92)

and we have:

−1

2
F̄ 2 = −1

2

(

∂ ∧ B + Ḡ
)2

=
1

2

(

−∂t
~B − ~∇χ+ ~Hst

)2

−1

2

(

−~∇× ~B + ~Est

)2

(2.93)

The source term ~Est has to satisfy two conditions. The first is the equation
~∇ · ~Est = ρ. The second is that ~∇× ~Est 6= 0.

The magnetic charge density and current are given by (2.8):

ρmag = ~∇ · ~H = ~∇ ·
(

−∂t
~B − ~∇χ + ~Hst

)

~jmag = −∂t
~H − ~∇× ~E = −∂t

(

−∂t
~B − ~∇χ+ ~Hst

)

− ~∇×
(

−~∇× ~B + ~Est

)

(2.94)
Consider the case where the system consists of a static point electric

charge e at the position ~R1 and a static electric charge −e at the position
~R2. The charge density is then:

ρ (~r) = eδ
(

~r − ~R1

)

− eδ
(

~r − ~R2

)

(2.95)

and the electric current ~j vanishes. In that case, we can use a string term of
the form:

~Est (~r) = e

∫

L

d~R δ
(

~r − ~R
)

~Hst (~r) = 0 (2.96)

where the line integral follows a path L (which is the string), which stems

from the charge e at the point ~R1 and terminates at the charge −e at the
point ~R2. A point on the path L can be parametrized by a function ~R (s)
such that:

~R1 = ~R (s1) ~R2 = ~R (s2) d~R = ds
d~R

ds
(2.97)
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in which case the line integral (2.96) acquires the more explicit form:

~Est (~r) = e

∫ s2

s1

ds
d~R

ds
δ
(

~r − ~R (s)
)

(2.98)

The argument which follows equation (2.43) can be repeated here with the
result:

~∇r· ~Est = e

∫

L

d~R·~∇r δ
(

~r − ~R
)

= −e
∫

L

d~R·~∇R δ
(

~r − ~R
)

= eδ
(

~r − ~R1

)

−eδ
(

~r − ~R2

)

(2.99)

If we had a single electric charge e at the point ~R1 the string would extend
out to infinity.

Many calculations are performed with straight line strings, discussed in
Sect. 2.6, and which is the following solution of the equation ∂ ·G = j:

G =
1

n · ∂n ∧ j Gµν =
1

n · ∂ (nµjν − nνjµ) (2.100)

where nµ is a given fixed vector and n · ∂ = nµ∂
µ. This form solves the

equation ∂ ·G = j if ∂µj
µ = 0, that is, if the electric current is conserved. If

we choose nµ to be space-like, the string terms ~Est and ~Hst are given by:

nµ = (0, ~n) , n · ∂ = ~n · ~∇, ~Est =
~n

~n · ~∇
ρ, ~Hst = − 1

~n · ~∇
~n×~j
(2.101)

Consider the Fourier transform of the source term ~Est:

~Est

(

~k
)

=

∫

d3r ei~k·~r ~n

~n · ~∇
ρ (~r) = − ~n

i~n · ~k
ρ
(

~k
)

(2.102)

The inverse Fourier transform is:

~Est (~r) = − 1

(2π)3

∫

d3k e−i~k·~r ~n

i~n · ~k

∫

d3r′e−i~k·~r′ρ (~r′) (2.103)

Let us choose the z-axis to be parallel to ~n, so that ~n·~k
n

= kz and ~n
n

= ~e(z)

where ~e(z) is the unit vector pointing in the z-direction. We obtain:

~Est (~r) = −~e(z)
1

(2π)3

∫

d3k e−i~k·~r 1

ikz

∫

d3r′e−i~k·~r′ρ (~r′) (2.104)
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We obtain:

~Est (~r) = ~e(z)

∫

d3r′δ (x− x′) δ (y − y′) θ (z − z′) ρ (~r′) = ~e(z)

∫ ∞

0

dz′ ρ (x, y, z − z′)

(2.105)
Let

~R (z′) = (0, 0, z′) d~R = ~e(z)dz
′ ~r − ~R = (x, y, z − z′) (2.106)

We obtain:

~Est (~r) =

∫ ∞

0

dz′
dR (z′)

dz′
ρ
(

~r − ~R (z′)
)

=

∫

L

d~R ρ
(

~r − ~R
)

(2.107)

where the path L is a straight line, starting at the origin and running parallel
to the z-axis. The expression (2.107) provides for a determination of the
operator ~n

~n·~∇ used in (2.101). For example, if the system has a single charge

e at the point ~R1, the density is ρ (~r) = eδ
(

~r − ~R1

)

and the expression yields

a string term ~Est (~r) which stems from the point ~R1 and extends to infinity
parallel to the z-axis. If there is an additional charge −e located at the point
~R2, then the expression will yield an additional parallel string, stemming
from the charge −e and extending to infinity parallel to the z-axis. It will
not be a string joining the two charges, unless the two charges happen to
be located along the z-axis. Of course, if the strings can be deformed so as
to merge at some point, then the two strings become equivalent to a single
string joining the equal and opposite charges.
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Chapter 3

The Landau-Ginzburg model of
a dual superconductor

We shall describe color confinement in the QCD ground state in terms of
a dual superconductor, which differs from usual metallic superconductors in
that the roles of the electric and magnetic fields are exchanged. The dual
superconductor will be described in terms of a suitably adapted Landau-
Ginzburg model of superconductivity. The original model was developed in
1950 by Ginzburg and Landau [8]. Particle physicists refer to it today as the
Dual Abelian Higgs model. The crucial property of the dual superconductor
will be the Meissner effect [51], which expels the electric field (instead of the
magnetic field, as in a usual superconductors). As a result, the color-electric
field which is produced, for example, by a quark-antiquark pair embedded
in the dual superconductor, acquires the shape of a color flux tube, thereby
generating an asymptotically linear confining potential.

It is easy to formulate a model in which the Meissner effect applies to the
electric field. All we need to do is to formulate the Landau-Ginzburg theory
in terms of a vector potential Bµ associated to the dual field tensor F̄ µν , as
in Sect.2.11. For an early review and a historical background, see the 1975
paper of Jevicki and Senjanovic [6]. The presentation given below owes a lot
to the illuminating account of superconductivity given in Sect.21.6 of vol.2 of
Steven Weinberg’s Quantum Theory of Fields [52]. We first study the dual
Landau-Ginzburg model with no reference to the color degrees of freedom.
The way the latter are incorporated is discussed in Chap.5.
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3.1 The Landau-Ginzburg action of a dual

superconductor

The Landau-Ginzburg (Abelian Higgs) model is expressed in terms of a
gauged complex scalar field ψ, which, presumably, represents a magnetic
charge condensate. The model action is:

Ij (B,ψ, ψ∗) =

∫

d4x

(

−1

4
F µνF

µν
+

1

2
(Dµψ) (Dµψ)∗ − 1

2
b
(

ψψ∗ − v2
)2
)

(3.1)
where ψ is the complex scalar field and F̄ µν the dual field tensor. The
covariant derivative is Dµ = ∂µ + igBµ, where Bµ is a vector potential, and:

(Dµψ) = (∂µψ + igBµψ) (Dµψ)∗ = (∂µψ
∗ − igBµψ

∗) (3.2)

The dimensionless constant g can be viewed as a magnetic charge. As ex-
plained in Sect.2.11, the presence of electric charges and currents can be
taken into account by adding a string term Ḡ to the dual field strength
tensor, which is:

F̄ µν = (∂ ∧B)µν + Ḡµν F µν = −
(

∂ ∧ B
)µν

+Gµν (3.3)

The string term is related to the electric current by the equation:

∂αG
αµ = jµ (3.4)

The Landau-Ginzburg action (3.1) is invariant under the abelian gauge trans-
formation:

Ω (x) = e−igβ(x) Dµ → ΩDµΩ†

Bµ → Bµ + (∂µβ) ψ → e−igβψ (3.5)

The last term of the action is a potential which drives the scalar field to a
non-vanishing expectation value ψψ∗ = v2 in the ground state of the system.
The superconducting phase occurs when ψψ∗ = v2 6= 0, and it will model the
color-confined phase of QCD. The normal phase occurs when ψψ∗ = 0 and it
represents the perturbative phase of QCD. The model parameter v may be
temperature and density dependent, and its variation can drive the system
to the normal phase. Of course, other processes may also contribute to the
phase transition. Note that, when ψψ∗ 6= 0, the action (3.8) is not invariant
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under the gauge transformation B → B+(∂β) of the field Bµ alone because,
loosely speaking, the gauge field Bµ acquires a squared mass g2ψψ∗. In the
compact notation described in App.A, the action reads:

Ij (B,ψ, ψ∗) =

∫

d4x

(

−1

2

(

∂ ∧ B + Ḡ
)2

+
1

2
|∂ψ + igBψ|2 − 1

2
b
(

ψψ∗ − v2
)2
)

(3.6)
The physical content of the model is often more transparent in a polar

representation of the complex field ψ:

ψ (x) = S (x) eigϕ(x) ψ∗ (x) = S (x) e−igϕ(x) (3.7)

The Landau-Ginzburg action (3.1) can be expressed in terms of the real fields
S and ϕ:

Ij (B,ϕ, S) =

∫

d4x

(

−1

2

(

∂ ∧ B + Ḡ
)2

+
g2S2

2
(B + ∂ϕ)2 +

1

2
(∂S)2 − 1

2
b
(

S2 − v2
)2
)

(3.8)
The action (3.8) is invariant under the gauge transformation:

B → B + (∂β) ϕ→ ϕ− β S → S (3.9)

In the ground state of the system, S = v, and fluctuations of the scalar
field S describe a scalar particle with a mass:

mH = 2v
√
b (3.10)

Particle physicists like to refer to S as a Higgs field and tomH as a Higgs mass.
The field ϕ remains massless and is sometimes referred to as a Goldstone field.
The gauge field develops a mass:

mV = gv (3.11)

Properties of superconductors are often described in terms of a pen-
etration depth λ and a correlation length ξ, which are equal to the inverse
vector and Higgs masses:

λ =
1

mV

ξ =
1

mH

(3.12)
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In usual metallic superconductors, the penetration length is the distance
within which an externally applied magnetic field disappears inside the su-
perconductor. In our dual superconductor, the penetration length λ will
measure the distance within which the electric field and the magnetic current
vanish outside the flux-tube which develops, for example, between a quark
and an antiquark. The correlation length is related to the distance within
which the scalar field acquires its vacuum value S = v. It is also a measure
of the energy difference, per unit volume, of the normal and superconducting
phase, usually referred to as the bag constant:

B =
1

8
m2

Hv
2 =

v2

8ξ2
=

m2
V

8g2ξ2
(3.13)

In type I superconductors (pure metals except niobium) ξ > λ andmV > mH .
In type II superconductors (alloys and niobium) λ > ξ and mH > mV . In
Sect. 3.4 we shall see that the dual superconductors which model the con-
finement of color charge have mH � mV . They are close to the boundary
which separates type I and type II superconductors. The London limit (Sect.
3.6), in which it is assumed that b → ∞ so that mH ≫ mV , is an extreme
example of a type II superconductor. In type II superconductors, the only
stable vortex lines are those with minimum flux. In type I superconductors,
vortices attract each other whereas they repel each other in type II super-
conductors. Useful reviews of these properties can be found in Chap.21.6
(volume 2) of Weinberg’s ”Quantum Theory of Fields” [52] and in Chap.4.3
of Vilenkin and Shellard’s ”Cosmic Strings and Other Topological Defects”
[53].

3.2 The Landau-Ginzburg action in terms of

euclidean fields

Let us write:
Bµ =

(

χ, ~B
)

(3.14)

and let us express the antisymmetric source term Gµν in terms of the two
vectors ~Est and ~Hst as in (2.90). The action (3.1) can then be broken down
to the form:

Ij

(

ψ, ψ∗, ~B, χ
)

=

∫

d4x
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[

1

2

(

−∂t
~B − ~∇χ+ ~Hst

)2

− 1

2

(

−~∇× ~B + ~Est

)2

+
1

2
(∂tψ + igχψ) (∂tψ

∗ − igχψ∗)

−1

2

(

~∇ψ − ig ~Bψ
)(

~∇ψ∗ + ig ~Bψ∗
)

− 1

2
b
(

ψψ∗ − v2
)2
]

(3.15)

Since no time derivative acts on the field χ, it acts as the constraint δI
δχ

= 0,
namely:

~∇ ·
(

−∂t
~B − ~∇χ+ ~Hst

)

+
ig

2
(ψ∂tψ

∗ − ψ∗∂tψ) + g2χψψ∗ = 0 (3.16)

The Eq.(3.4) which relates the source terms to the electric charge density
and current reads:

~∇ · ~Est = ρ − ∂t
~Est + ~∇× ~Hst = ~j (3.17)

3.3 The flux tube joining two equal and op-

posite electric charges

Consider a system composed of two static equal and opposite electric charges
±e placed on the z-axis at equal distances from the origin and separated by
a distance R. The charge density is then:

ρ (~r) = eδ
(

~r − ~R1

)

−eδ
(

~r − ~R2

)

~R1 =

(

0, 0,−R
2

)

~R2 =

(

0, 0,
R

2

)

(3.18)
The electric current is then jµ = δµ0ρ with ~j = 0. As shown in Sect.2.11, the
string terms satisfy the equations:

~∇ · ~Est = ρ ~∇× ~Est 6= 0 ~Hst (~r) = 0 (3.19)

Note the condition ~∇× ~Est 6= 0. If this condition is not satisfied, the electric
density decouples from the system, as can be seen on the expression (3.22)
of the energy. String solutions are designed to avoid this.

The string term ~Est has the form (2.96):

~Est (~r) = e

∫ ~R2

~R1

d~Z δ
(

~r − ~Z
)

(3.20)
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where the integral follows a path L (the string), which stems from the point
~R1 and terminates at the point ~R2. Following the steps described in Sect.
2.5, we can easily check that the form (3.20) satisfies the equation ~∇· ~Est = ρ
with ρ given by (3.18).

When the fields are time-independent, the energy density is equal to
minus the action density given by (3.15). The energy of the system is thus:

Eρ

(

ψ, ψ∗, ~B, χ
)

=

∫

d3r

[

−1

2

(

~∇χ
)2

+
1

2

(

−~∇× ~B + ~Est

)2

− 1

2
g2χ2ψψ∗

+
1

2

(

~∇ψ − ig ~Bψ
)(

~∇ψ∗ + ig ~Bψ∗
)

+
1

2
b
(

ψψ∗ − v2
)2
]

(3.21)

The constraint (3.16) is satisfied with χ = 0. The energy becomes the fol-
lowing sum of positive terms:

Eρ

(

ψ, ψ∗, ~B
)

=

∫

d3r

[

1

2

(

−~∇× ~B + ~Est

)2

+
1

2

(

~∇ψ − ig ~Bψ
)(

~∇ψ∗ + ig ~Bψ∗
)

+
1

2
b
(

ψψ∗ − v2
)2
]

(3.22)

This expression can also be derived from the classical energy (3.168) by

making the energy stationary with respect to the conjugate momenta ~H and
P , as becomes time-independent fields.

3.3.1 The Ball-Caticha expression of the string term

The string term (3.20) does not depend on the fields B,ψ and ψ∗. A useful
trick, introduced by Ball and Caticha [54], and used in all subsequent work,

consists in expressing the string term ~Est in terms of the electric field ~E0

and the dual vector potential ~B0, which are produced by the electric charges
when they are embedded in the normal vacuum where ψ = 0. It is a way to
express the longitudinal and transverse parts of the string term ~Est in terms
of the known fields ~E0 and ~B0.

The electric field ~E0 produced by the electric charges embedded in the
normal vacuum is the well known Coulomb field:

~E0 (~r) = − e

4π
~∇





1
∣

∣

∣
~r − ~R1

∣

∣

∣

− 1
∣

∣

∣
~r − ~R2

∣

∣

∣



 =
e

4π







~r − ~R1
∣

∣

∣
~r − ~R1

∣

∣

∣

3 − ~r − ~R2
∣

∣

∣
~r − ~R2

∣

∣

∣

3







(3.23)
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This electric field ~E0 can, however, also be expressed in terms of the dual
potential ~B0 and the string term ~Est, using the expression (2.91):

~E0 = −~∇× ~B0 + ~Est (3.24)

The idea is to use this equation in order to express the string term ~Est in
terms of ~E0 and ~B0.

We can calculate the dual vector potential ~B0 as in Sect. 2.7. Since no
magnetic current ~jmag occurs in the normal vacuum, the field ~B0 is given by
(2.94):

~∇×
(

~∇× ~B0
)

= ~∇× ~Est (3.25)

The string term ~Est is given by the line integral (3.20) so that:

~∇×
(

~∇× ~B0
)

= e~∇r ×
∫

L

d~Z δ
(

~r − ~Z
)

(3.26)

This is an equation for the transverse part ~B0
T which is the only part we

need. We have ~∇×
(

~∇× ~B0
)

= −∇2 ~B0
T and we can use (2.69) to write the

equation above in the form:

−∇2
r
~B0

T = − e

4π
~∇r ×

∫

L

d~Z ∇2
r

1
∣

∣

∣
~r − ~Z

∣

∣

∣

(3.27)

so that we can take:

~B0 (~r) =
e

4π
~∇r ×

∫

L

d~Z
1

∣

∣

∣
~r − ~Z

∣

∣

∣

(3.28)

From (3.24) we see that we can write the string term in the form ~Est =
~E0 + ~∇× ~B0. We substitute this expression into the energy (3.22), with the
result:

Eρ

(

ψ, ψ∗, ~B
)

=

∫

d3r

[

1

2

(

−~∇× ~B + ~E0 + ~∇× ~B0
)2

+
1

2

(

~∇ψ − ig ~Bψ
)(

~∇ψ∗ + ig ~Bψ∗
)

+
1

2
b
(

ψψ∗ − v2
)2
]

(3.29)
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Since ~E0 is a gradient, the mixed term ~E0 ·
(

~∇×
(

− ~B + ~B0
))

vanishes. The

field ~E0 contributes a simple Coulomb term to the energy:
∫

d3r
1

2
~E2

0 = − e2

4πR
+ (terms independent of R) (3.30)

In the following, we neglect the (albeit infinite) self-energy terms which are
independent of R. The energy can thus be written in the form:

Eρ

(

ψ, ψ∗, ~B
)

= − e2

4πR
+

∫

d3r

[

1

2

(

−~∇× ~B + ~∇× ~B0
)2

+
1

2

(

~∇ψ − ig ~Bψ
)(

~∇ψ∗ + ig ~Bψ∗
)

+
1

2
b
(

ψψ∗ − v2
)2
]

(3.31)

where ~B0 is given by (3.28).

3.3.2 Deformations of the string and charge quantiza-

tion

Consider the effect of deforming the string, that is, the path L which defines
the vector ~B0 (~r) in the expression (3.28). Let us deform a segment of the
path, situated between two points A and B on the path. The corresponding
change of ~B0 is:

~B0 (~r) → ~B0 (~r) +
e

4π
~∇r ×

∫

C

d~Z
1

∣

∣

∣
~r − ~Z

∣

∣

∣

(3.32)

where the contour C follows the initial path from A to B and then continues
back from B to A along the modified path, as illustrated on Fig.2.3. The
expression (3.32) is the same as the expression (2.76) and we can therefore
repeat the argument given in Sect.2.9 to show that the deformation of the
string L adds a gradient to ~B0:

~B0 (~r) → ~B0 (~r) +
e

4π
~∇Ω (3.33)

where Ω is the solid angle subtended by the surface S, bounded by the contour
C, viewed from the point ~r. The energy (3.31) is changed to:

Eρ

(

ψ, ψ∗, ~B
)

= − e2

4πR
+

∫

d3r

[

1

2

(

−~∇× ~B + ~∇× ~B0 +
e

4π
~∇×

(

~∇Ω
))2
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+
1

2

(

~∇ψ − ig ~Bψ
)(

~∇ψ∗ + ig ~Bψ∗
)

+
1

2
b
(

ψψ∗ − v2
)2
]

(3.34)

We have purposely not set to zero the term ~∇×
(

~∇Ω
)

because, as shown in

Sect.2.9, the solid angle Ω (~r) is a discontinuous function of ~r. It undergoes
a sudden change of 4π as ~r crosses the surface S bordered by the path C

(the shaded area in Fig. 2.3). The Eq. (2.81) shows that ~∇ ×
(

~∇Ω
)

is

non-vanishing on the surface S. We can, however, compensate for the extra

term e
4π
~∇×

(

~∇Ω
)

in the energy (3.34) by performing the following singular

gauge transformation:

~B → ~B +
e

4π

(

~∇Ω
)

ψ → eige Ω

4πψ (3.35)

which reduces the energy (3.34) to its original form (3.31). The energy (3.31)
becomes thus independent of the shape of the string. The gauge transfor-
mation (3.35) is not well defined because the transformed field e−ige Ω

4πψ is

a discontinuous function of ~r thereby making the gradient ~∇e−ige Ω

4πψ ill de-
fined. However, we can impose the condition:

eg = 2nπ (3.36)

which makes the field e−ige Ω

4πψ a continuous and differentiable function of ~r.
We recover the Dirac quantization condition (2.80). Thus, deformations of
the string can be compensated by singular gauge transformations.

3.3.3 The relation between the Dirac string
and the flux tube in the unitary gauge

It is convenient to express the energy (3.31) in terms of the polar represen-
tation (3.7) of the complex scalar field:

Eρ

(

~B, ϕ, S
)

= − e2

4πR
+

∫

d3r

[

1

2

(

−~∇× ~B + ~∇× ~B0
)2

+
g2S2

2

(

~B − ~∇ϕ
)2

+
1

2

(

~∇S
)2

+
1

2
b
(

S2 − v2
)2
]

(3.37)
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As shown in Sect.3.3.2, a modification of the shape of the string, which
defines ~B0 in Eq.(3.28), adds the gradient e

4π
~∇Ω to ~B0. The corresponding

modification of the energy can be compensated by the gauge transformation

~B → ~B +
e

4π

(

~∇Ω
)

ϕ→ ϕ+ ige
Ω

4π
(3.38)

Because the energy (3.37) is invariant under the gauge transformation:

~B → ~B − ~∇β ϕ→ ϕ− β (3.39)

we can choose the gauge β = ϕ, which is usually referred to as the unitary
gauge. In this gauge, the field ϕ vanishes and the energy (3.37) is equal to:

Eρ

(

~B, S
)

= − e2

4πR
+

∫

d3r

[

1

2

(

−~∇× ~B + ~∇× ~B0
)2

+
g2S2

2
~B2 +

1

2

(

~∇S
)2

+
1

2
b
(

S2 − v2
)2
]

(3.40)

The energy (3.40), expressed in the unitary gauge, is not independent of

the shape of the string which defines the field ~B0, nor should it be, because
modifications of the shape of the string are compensated by modifications
of the phase ϕ. When, for example, flux tubes joining electric charges are
calculated by minimizing the energy (3.40) expressed in the unitary gauge,
the flux tubes follow and develop around the Dirac strings. For example, in
Sect.3.3.5, we shall see that the string term represents the longitudinal part
of the electric field. In the unitary gauge, the shapes of the Dirac strings can
be chosen so as to minimize the energy. They can subsequently be deformed,
by re-introducing the field ϕ, as in the expression (3.37) for example.

3.3.4 The flux tube calculated in the unitary gauge

When the system consists of two static equal and opposite charges, the charge
density is given by (3.18) and the Dirac string is a straight line joining the two

charges. The field ~B0 (~r) is given by the expression (3.28) with d~Z = ~e(z)dz,
where ~e(z) is a unit vector parallel to the z-axis. The explicit expression can
be written in cylindrical coordinates (App.A.6.2):

~B0 (~r) =
e

4π
~∇r × ~e(z)

∫ R
2

−R
2

dz′
1

√

ρ2 + (z − z′)2
(3.41)
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Use (A.106) to get:

~B0 (~r) =
e

4π
~e(θ)

∫ R
2

−R
2

dz′
ρ

(

ρ2 + (z − z′)2)
3

2

= −~e(θ)
e

4π

1

ρ









z − R
2

√

(

ρ2 +
(

z − R
2

)2
)

− z + R
2

√

(

ρ2 +
(

z + R
2

)2
)









≡ ~e(θ)B
0 (ρ, z)

(3.42)

This is an analytic expression for the field ~B0 in cylindrical coordinates. From
(A.105) we can check directly that ~∇. ~B0 = 0 so that ~B0 is transverse. Near
the z-axis, where ρ is small, the field B0 (ρ, z) becomes singular:

B0 (ρ, z) →
ρ→0

= − e

4π

1

ρ

(

z − 1
2
R

∣

∣z − 1
2
R
∣

∣

− z + 1
2
R

∣

∣z + 1
2
R
∣

∣

)

= e
2πρ

when − 1
2
R < z < R

2

= 0 when z < −R
2

and z > R
2

(3.43)

The fields which make the energy (3.40) stationary satisfy the equations:

~∇×
(

~∇× ~B
)

− ~∇×
(

~∇× ~B0
)

+ g2S2 ~B = 0

[

−~∇2 + 2b
(

S2 − v2
)

+ g2 ~B2
]

S = 0 (3.44)

When ~B0 has the form (3.42), a solution exists, in cylindrical coordinates, in

which the fields S and ~B have the form:

S (~r) = S (ρ, z) ~B (~r) = ~e(θ)B (ρ, z) (3.45)

The field equations (3.44) reduce to the following set of coupled equations
for the functions B (ρ, z) and S (ρ, z):

−∂
2 (B − B0)

∂z2
− ∂

∂ρ

1

ρ

(

∂

∂ρ
ρ (B − B0)

)

+ g2S2B = 0

− 1

ρ

∂

∂ρ

(

ρ
∂

∂ρ
S

)

+ 2b
(

S2 − v2
)

S + g2C2B = 0 (3.46)
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Using (A.106), we can express the energy (3.40) in terms of the functions
S (ρ, z), B (ρ, z) and B0 (ρ, z):

Eρ

(

~B, S
)

= − e2

4πR
+2π

∫ ∞

0

ρdρ

∫ ∞

−∞
dz

[

1

2

(

∂ (B − B0)

∂z

)2

+
1

2ρ2

(

∂

∂ρ
ρ
(

B − B0
)

)2

+
g2S2

2
B2 +

1

2

(

∂S

∂ρ

)2

+
1

2

(

∂S

∂z

)2

+
1

2
b
(

S2 − v2
)2

]

(3.47)

We require that, far from the sources (ρ → ∞, z → ±∞), the fields
should recover their ground state values S = v and B = 0. Close to the
z-axis, the field B (ρ, z) ≈ 1

ρ
thereby making the electric field finite in this

region. However, such a behavior would make the contribution of the term
g2S2

2
B2 diverge, unless S → 0 in the vicinity of the string. This is reason why

the energy (as well as the string tension), calculated in the London limit, has
an ultraviolet divergence (see Sect.3.3.6).

The role of the model parameters is made more explicit, if we work with
the following dimensionless fields and distances:

B (ρ, z)−B0 (ρ, z) = vl (x, y) S (ρ, z) = vs (x, y) B0 (ρ, z) = vb0 (x, y)

x = gvρ = mV ρ y = gvz = mV z (3.48)

where mH and mV are the Higgs and vector masses (3.10) and 3.11), respec-
tively equal to the inverse penetration and correlation lengths (3.12). The
energy acquires the form:

ER (l, s) = − e2

4πR
+
mV

g2
2π

∫ ∞

0

xdx

∫ ∞

−∞
dy

[

1

2

(

∂l

∂y

)2

+
1

2x2

(

∂

∂x
xl

)2

+
1

2
s2 (c− b0)

2

+
1

2

(

∂s

∂x

)2

+
1

2

(

∂s

∂y

)2

+
m2

H

8m2
V

(

s2 − 1
)2

]

(3.49)

where mV

g2 = v
g
.

The flux tube obtained by minimizing the energy (3.49) is calculated and
displayed in the 1990 paper of Maedan, Matsubara and Suzuki [55]. The flux
tube is very similar to the one obtained in lattice calculations, illustrated in
Fig.3.1. A more detailed comparison to lattice data is made in Sect.3.4. More
recently, progress towards analytic forms for the solutions has been reported
in the 1998 paper of Baker, Brambilla, Dosch and Vairo [56].
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Figure 3.1: The lines of force of the electric field between two static color-
electric SU (2) sources obtained from a lattice calculation in the maximal
abelian projection [31].

3.3.5 The electric field and the magnetic current

The electric and magnetic fields are given by (2.91):

~E = −~∇× ~B + ~Est ~H = 0 (3.50)

The longitudinal part of the electric field is the string term ~Est and it is given
by:

~∇ · ~E = ~∇ · ~Est = ρ (3.51)

A magnetic current (2.94) is produced by the transverse part of the electric
field:

~jmag = −~∇× ~E (3.52)

The relation ~jmag = −~∇× ~E is sometimes referred to as the ”Ampere law”.

When the fields have the cylindrical symmetry (3.45), the electric field ~E
and the magnetic current ~jmag , given by (3.50) and (3.52), are:

~E (ρ, z) = −~∇× ~B + ~∇× ~B0 + ~E0 = ~e(ρ)
∂B

∂z
− ~e(z)

1

ρ

(

∂

∂ρ
ρB

)

+ ~E0

~jmag (ρ, z) = ~∇×
(

~∇× ~B
)

− ~∇×
(

~∇× ~B0

)
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= −~e(θ)

(

∂2 (B − B0)

∂z2
+

∂

∂ρ

1

ρ

∂

∂ρ
ρ
(

B − B0
)

)

(3.53)

We see that the magnetic current circulates around the z-axis. This is why
the flux tube is often called a vortex.

3.3.6 The Abrikosov-Nielsen-Olesen vortex

When mVR ≫ 1 and mHR ≫ 1, that is, when the distance which separates
the electric charges is much larger than the width of the flux tube, in regions
of space where both ρ and z are much smaller than R, the source term (3.42)

reduces to ~B0 = −~e(θ)
e

2πρ
, and this in turn implies that ~∇× ~B0 = 0. In this

region of space, the fields (3.45), which are solutions of the equations (3.44),
become independent of z and they acquire the simpler form:

S (~r) = S (ρ) ~B (~r) = ~e(θ)B (ρ) (3.54)

The electric field (3.53) points in the z-direction:

~E (~r) = −~∇× ~B = −~e(z)
1

ρ

∂

∂ρ
(ρB) (3.55)

and a magnetic current ~jmag circulates around the z-axis:

~jmag = −~∇× ~E = −~e(θ)
∂

∂ρ

1

ρ

∂

∂ρ
ρB (3.56)

A flux tube is formed which is referred to as the Abrikosov-Nielsen-Olesen
vortex, studied in the 1973 paper of Nielsen and Olesen [1]. It is the ana-
logue of the vortex lines, which were predicted to occur in superconductors
by Abrikosov [57]. Being particularly simple, the Abrikosov-Nielsen-Olesen
vortex has been extensively studied. In Sect. 3.4, we shall see that lattice
simulations confirm the formation of an Abrikosov-Nielsen-Olesen vortex be-
tween equal and opposite charges.

The energy density becomes independent of both z and θ, so that, in
terms of the dimensionless fields and distances (3.48), the energy per unit
length along the z-axis reduces to:

∂ER (b, s)

∂z
= 2πv2

∫ ∞

0

xdx

(

1

2x2

(

∂

∂x
xb

)2

+
1

2
s2b2 +

1

2

(

∂s

∂x

)2

+
m2

H

8m2
V

(

s2 − 1
)2

)

(3.57)
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where b (x) = vB (z) and where v2 =
m2

V

g2 . The fields s (x) and b (x) which
make the energy stationary are the solutions of the equations:

− d

dx

1

x

d

dx
(xb) + s2b = 0

− 1

x

d

dx
x
d

dx
s+ s2b+

m2
H

2m2
V

(

s2 − 1
)

s = 0 (3.58)

The boundary conditions are:

b →
x→0

a

x
s →

x→0
0 b →

x→∞
0 s →

x→0
1 (3.59)

The constant a can be determined from the flux of the electric field crossing
a surface normal to the vortex.

The expression (3.57) is interpreted as the string tension, that is, the
coefficient σ of the asymptotically linear potential σR which develops between
static electric charges embedded in the dual superconductor. The string
tension depends on the two parameters v and mH

mV
, the ratio of the Higgs

and vector masses. When mH = mV , that is, when the system is on the
borderline between a type I and II superconductor, analytic solutions of the
equations of motion have been found by Bogomolnyi [58]. In this Bogomolnyi
limit, the string tension is given by the expression:

√
σ =

√

π

g2
m2 m = mH = mV (3.60)

The stability and extensions to supersymmetry have also been investigated.
For a review, see the Sect.4.1 of the useful book by Vilenkin and Shellard
[53]. The interaction between vortices is discussed in Sect.4.3 of that book.
When mH ≫ mV (type II superconductors), vortices repel each other. When
mH ≪ mV (type I superconductors) an attraction between vortices occurs.

• Exercise: Consider two equal and opposite electric charges ±e em-
bedded in a dual superconductor. Assume that they are separated by a
large distance L, such that a flux tube is formed, the energy of which is
proportional to its length L. We can then write the energy of the flux
tube in the form E = αe2L. Study how the energy of the system varies
as a function of the electric charge e, for a fixed value of L. Show that,
on the average, the energy increases linearly (and not quadratically)
with e, because several flux tubes can form.
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3.3.7 Divergencies of the London limit

The London limit is the extreme case mH ≫ mV of a type II superconductor.
In this limit, the energy (3.57) is be minimized when the field s (x) maintains
its ground state value s = 1 (S = v) for all values of x. The equation for
b (x) reduces then to:

− d

dx

1

x

d

dx
(xb) + b = 0

which is equivalent to the following equation for the field C (z) :

− d

dρ

1

ρ

d

dρ
(ρB) +m2

VB = 0 (3.61)

The solution, which vanishes far from the vortex is:

b (x) = aK1 (x) or B (z) =
a

v
K1 (mV ρ) (3.62)

However, for small values of x, we have:

x (K1 (x))2 = x−1 +

(

− ln
1

x
− ln 2 + γ − 1

2

)

x+O
(

x3
)

(3.63)

so that the integral of 1
2
s2b2, in the string tension (3.57), produces a logarith-

mic divergence at small x. This is the origin of the divergence obtained in
the analytic expression (3.106) of the string tension in the London limit. The

electric field, far from the sources, is ~E = −~∇ × ~B and it has the singular
behavior ~E (~r) ≃ −~e(z)

a
v
ln (mV ρ) when ρ → 0. This singular behavior does

not occur in the Landau-Ginzburg model and Fig. 3.2 shows that it is also
not observed in lattice simulations.

3.4 Comparison of the Landau-Ginzburg model

with lattice data

In 1998, Bali, Schlichter and Schilling [33] compared the flux tube formed
by two static sources in a SU (2) lattice calculation in the maximal abelian
gauge (see Chapt.4) with the Abrikosov-Nielsen-Olesen vortex formed in the
Landau-Ginzburg model of a dual superconductor. They measured both the
electric field and magnetic current. The flux tube is depicted in Fig.3.1.
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Figure 3.2: The profiles of the electric field E and of the magnetic current,
marked kθ on the figure, are plotted as a function of the the distance x from
the center of the flux tube. The results are obtained from a pure gauge
SU (2) lattice calculation in the maximal abelian gauge [33]. The curves are
obtained from the Landau-Ginzburg model of a dual superconductor.
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Figure 3.3 shows that the relation ~jmag = −~∇× ~E between the electric field
(3.55) and the magnetic current (3.56) is satisfied, and they checked that a
magnetic current circulates around the flux tube. They also measured the
profiles of the electric field and of the magnetic current and compared it to
the corresponding expressions (3.55) and (3.56) obtained for the Abrikosov-
Nielsen-Olesen vortex. Figure 3.2 shows the fit obtained with the parameters:

mV = gv = 1.23 GeV, mH = 2v
√
b = 1.04 GeV (3.64)

The values of mV and mH show that system is a type I superconductor,
but close to the border separating type I and type II superconductors. A
similar conclusion was reached by Matsubara, Ejiri and Suzuki in an earlier
1994 paper [59] for both color SU (2) and SU (3). The fit appears to be
good enough to be significant. Note that the electric field behaves quite
regularly when x → 0, that is, close to the z-axis. This is in contradiction
with the electric field calculated in the London limit. In a 1999 paper [34],
Gubarev, Ilgenfritz, Polikarpov and Suzuki fitted the same lattice data with
the parameters:

g = 5. 827 ± 0.004 mV = 1.31 ± 0.07 GeV mH = 1.36 ± 0.01 GeV
(3.65)

The data are taken with a lattice spacing fitted to the observed string tension√
σSU(2) = 440 MeV . The Landau-Ginzburg dual superconductor gives a

string tension equal to:

√
σ = 400.1 ± 53.0 MeV ≈ 0.91

√
σSU(2) (3.66)

A more recent fit reported in the 2003 paper by Koma, Ilgenfritz and Suzuki
[60] yields the following parameters:

mV = 953(20) MeV mH = 1091(7) MeV (3.67)

In this paper, the authors find a small dependence of the fitted coupling con-
stant g on the distance separating the quark and antiquark, which is com-
patible with antiscreening of the effective QCD coupling constant, derived
from the Dirac quantization condition eeff = 4π

g
.

Suganuma and Toki [61] argue in favor of a different set of model param-
eters, namely:

mV = 0.5 GeV mH = 1.26 MeV (3.68)
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Figure 3.3: The figure is a lattice confirmation of the ”Ampere law” ~jmag =

−~∇× ~E. The profiles of the magnetic current, marked k on the figure and of
~∇× ~E, marked curlE on the figure, are plotted as a function of the distance
x from the center of the flux tube. The results are obtained from a pure
gauge SU (2) lattice calculation in the maximal abelian gauge [33].
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which would make the QCD ground state is a type II superconductor. They
do not, however, fit the profiles of the Abrikosov-Nielsen-Olesen vortex.

The scalar field S = |ψ|, which acts as an order parameter in the Landau-
Ginzburg model, does not, as such, specify the nature of the monopole
condensation, assumed to occur in the QCD ground state. Similarly, the
Landau-Ginzburg model of usual superconductors was not direct evidence
of electron-pair condensation, which was postulated and discovered six years
later [62, 63].

3.5 The dielectric function of the color-dielectric

model

The Abrikosov-Nielsen-Olesen vortex may also be described in terms of the
color dielectric model of T.D.Lee [64]. The model is described by the action:

Ij (A, σ) =

∫

d4x

(

−1

2
κ (σ) (∂ ∧ A)2 +

1

2
(∂σ)2 − b

2

(

σ2 − v2
)2 − j · A

)

(3.69)
where κ (σ) is a dielectric constant chosen such that is decreases regularly
from 1 to 0 as σ varies from zero to v and where jµ is a source for electric
charges and currents. The equations of motion are:

∂ · κ (∂ ∧A) = j

−∂2σ− 1

2
(∂ ∧ A)2 κ′ (σ)−2b

(

σ2 − v2
)

σ = 0

(

κ′ (x) =
δκ (σ)

δσ (x)

)

(3.70)

If we define the field strength tensor to be F µν = κ (σ) (∂ ∧A) then
the equation of motion for Aµ becomes equivalent to the Maxwell equation
∂ · F = j. The system also develops a magnetic current1, given by:

jmag = ∂ · F̄ = (∂κ) · ∂ ∧ A (3.71)

Let us write:
Aµ =

(

φ, ~A
)

jµ =
(

ρ,~j
)

(3.72)

1I am indebted to Gunnar Martens for showing this to me prior to the publication of
his calculations.
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The action can be broken down to:

Ij (A, φ, σ) =

∫

d4x

{

1

2
κ
(

−∂t
~A− ~∇φ

)2

− 1

2
κ
(

~∇×A
)2

+
1

2
(∂tσ)2 − 1

2

(

~∇σ
)2

− b

2

(

σ2 − v2
)2 − ρφ+~j · ~A

}

(3.73)

The field φ imposes the constraint:

~∇ · κ
(

−∂t
~A− ~∇φ

)

= ρ (3.74)

In the presence of static charges:

ρ (x) = ρ (~r) ~j (x) = 0

the source jµ is time independent and the fields Aµ and σ may also be
assumed to be time independent. The energy in the presence of static sources
is:

Eρ (A, φ, σ) =

∫

d3r

(

−1

2
κ
(

~∇φ
)2

+
1

2
κ
(

~∇× A
)2

+
1

2

(

~∇σ
)2

+
b

2

(

σ2 − v2
)2 − ρφ

)

(3.75)
and the constraint is:

− κ′
(

~∇σ
)

·
(

~∇φ
)

− κ∇2φ = ρ (3.76)

The energy is minimized when:

~∇× ~A = 0 (3.77)

in which case the energy reduces to:

Eρ (φ, σ) =

∫

d3r

(

−1

2
κ
(

~∇φ
)2

+
1

2

(

~∇σ
)2

+
b

2

(

σ2 − v2
)2 − ρφ

)

(3.78)

The field σ which minimizes the energy satisfies the equation:

−∇2σ + 2b
(

σ2 − v2
)

σ − 1

2
κ′
(

~∇φ
)2

= 0 (3.79)

Consider two static charges on the z-axis, placed symmetrically with re-
spect to the origin:

ρ (~r) = −eδ
(

~r − ~R1

)

+ eδ
(

~r − ~R2

)

(3.80)
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If the charges are far apart, then, close to the x − y plane, we expect the
electric field to be constant and directed along ~e(z). A solution of equations
(3.76) and (3.79) exists in cylindrical coordinates, of the form:

σ (~r) = σ (ρ) φ (~r) = az (3.81)

and the function σ (ρ) is the solution of the equation:

− 1

ρ

d

dρ

(

ρ
dσ

dρ

)

+ 2b
(

σ2 − v2
)

σ − 1

2
a2κ′ = 0 (3.82)

In this region, the electric and magnetic fields are:

~E (ρ) = −κ~∇φ = −~e(z)aκ (ρ) ~H = 0 (3.83)

In this sense, lattice calculations, as well as the Landau-Ginzburg model
which agrees with them, determine the function κ [σ (ρ)] of the dielectric

model. The magnetic current jµ
mag =

(

ρmag,~jmag

)

is such that ρmag = 0 and:

~jmag = −~∇× ~E =
(

~∇κ
)

×
(

~∇φ
)

= κ′
(

~∇σ
)

×
(

~∇φ
)

= −~e(θ)aκ
′dσ

dρ
(3.84)

so that a magnetic current flows around the vortex which may be viewed as
an Abrikosov-Nielsen-Olesen vortex.

There is however an important difference between the color-dielectric
model described by the action (3.69) and the Landau-Ginzburg model. If
the system, described by the color-dielectric model, is perturbed or raised to
a finite temperature, the expectation value of the field σ may be shifted to,
typically, a lower value and the color dielectric function no longer vanishes, in
spite of having been fine-tuned to do so in the vacuum at zero temperature.
The model therefore describes the physical vacuum in terms of an unstable
phase, which is not the case of the Landau-Ginzburg model which describes
the superconducting phase within a finite range of temperatures.

3.6 The London limit of the Landau-Ginzburg

model

The London limit of the Landau Ginzburg model is obtained by letting b→
∞, which means that the Higgs mass mH is much larger than the vector
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meson mass mV . In that limit, the scalar field maintains its vacuum value
S = v and the model action (3.8) reduces to:

Ij (B,ϕ) =

∫

d4x

(

−1

2

(

∂ ∧B + Ḡ
)2

+
m2

V

2
(B + ∂ϕ)2

)

(3.85)

where mV , the mass of the vector boson, is equal to the inverse penetration
depth (3.12), and where the source term G is related to the electric current
j by the equation:

∂ ·G = j (3.86)

Because of its simplicity (the action is a quadratic form of the single field
Bµ), the London limit has been extensively studied. It yields simple analytic
forms for the confining potential, field strength correlators, and more. How-
ever, as explained in Sect. 3.3.4, the linear confining potential develops an
ultraviolet divergence because, in the London limit, the scalar field S is not
allowed to vanish in the center of the flux tube. For the same reason, the
electric field develops a singularity in the center of the flux tube and this is
not observed in lattice simulations (see Sect. 3.4).

We shall study the London limit for a system consisting of two static
electric charges. The electric current is then:

jµ = (ρ (~r) , 0, 0, 0) ∂2jµ = −δµ
0
~∇2ρ

ρ (~r) = eδ (~r − ~r1) − eδ (~r − ~r2) (3.87)

We work in the unitary gauge and we assume a straight line Dirac string,
running from one charge to the other. In this case, we can use the form
(2.100):

G =
1

n · ∂n ∧ j (3.88)

with a space-like vector nµ = (0, ~n) and with ~n parallel to the line joining
the charges:

~n = ~r2 − ~r1

nµ = (0, ~n) n2 = −~n2 n · j = 0 (n · ∂) j = ~n · ~∇ρ (3.89)

The equation of motion for the field Bµ is:

∂ ·
(

∂ ∧B +G
)

+m2
VB = 0 (3.90)
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If we decompose Bµ into longitudinal and transverse parts using the projec-
tors (A.10), we find that Bµ is transverse and equal to:

B = − 1

∂2 +m2
V

∂ ·G (3.91)

We can then eliminate the field Bµ from the action, which reduces to:

Ij =

∫

d4x

(

−1

2

(

∂ · Ḡ
) 1

∂2 +m2
V

(

∂ · Ḡ
)

− 1

2
Ḡ2

)

(3.92)

3.6.1 The gluon propagator

When G has the form (3.88), we have:

(

∂ ·G
)µ

=
1

n · ∂
(

∂ · n ∧ j
)µ

= − 1

n · ∂ε
µαβγ∂αnβjγ G

2
= −

(

1

n · ∂ (n ∧ j)
)2

(3.93)
Substituting, the action (3.92) becomes:

Ij =

∫

d4x

(

1

2
j3
(

εµ123∂1n2

) 1

(n · ∂)2

1

∂2 +m2
V

(

εµ456∂
4n5j6

)

− 1

2
(n ∧ j) 1

(n · ∂)2 (n ∧ j)
)

We can use (A.8) to evaluate εµ123εµ456. Remembering that ∂µj
µ = 0, a

straightforward, albeit risky calculation yields the action:

Ij =

∫

d4x

(

1

2
j

1

(n · ∂)2

(

∂2n2 − (n · ∂)2) 1

∂2 +m2
V

j − 1

2
(n · j) ∂2

(n · ∂)2

1

∂2 +m2
V

(n · j)
)

(3.94)

−
∫

d4x

(

−1

2
(n · j) 1

(n · ∂)2 (n · j)
)

(3.95)

We group together the terms which depend on n · ∂ and those which do not,
to get:

Ij =

∫

d4x jµ

(

−1

2

gµν

∂2 +m2
V

− 1

2

n2

(n · ∂)2

(

m2
V

∂2 +m2
V

)(

gµν − nµnν

n2

))

jν

(3.96)
Since jµ is a source term for the gluon field Aµ, the London limit of the gluon
propagator in the dual superconductor can be read off the expression (3.96):

Dµν = −1

2

gµν

∂2 +m2
V

− 1

2

n2

(n · ∂)2

(

m2
V

∂2 +m2
V

)(

gµν − nµnν

n2

)

(3.97)
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3.6.2 The energy in the presence of static electric charges
in the London limit

When the system consists of static electric charges, the fields are time-
independent and the energy density is equal to minus the lagrangian. The
energy obtained from the action 3.96 is thus:

Eρ =

∫

d3r jµ

(

1

2

gµν

∂2 +m2
V

+
1

2

n2

(n · ∂)2

(

m2
V

∂2 +m2
V

)(

gµν − nµnν

n2

))

jν

=

∫

d3r
1

2
ρ







1

−~∇2 +m2
V

− ~n2

(

~n · ~∇ρ
)2

(

m2
V

−~∇2 +m2
V

)






ρ

=
1

(2π)3

∫

d3k
1

2
ρ~k







1

k2 +m2
V

+
m2

V

(k2 +m2
V )

~n2

(

~n · ~k
)2






ρ−~k (3.98)

If we substitute the form (3.87) of ρ into the energy (3.98), we obtain:

Eρ =
1

2

∫

d3r1d
3r2ρ (~r1) v (~r1 − ~r2) ρ (~r2) (3.99)

with:

v (~r) =
−e2
(2π)3

∫

d3ke−i~k·~r







1

k2 +m2
V

+
m2

V

(k2 +m2
V )

r2

(

~r · ~k
)2






(3.100)

where we set ~n = ~r in accordance with (3.89).

3.6.3 The confining potential in the London limit

The first term of the potential (3.100) is a short ranged Yukawa potential:

vSR (~r) =
−e2
(2π)3

∫

d3ke−i~k·~r 1

k2 +m2
V

=
−e2
4πr

e−mV r (3.101)

Consider the second (long-range) term:

vLR (~r) =
−e2
(2π)3

∫

d3ke−i~k·~r m2
V

(k2 +m2
V )

r2

(

~r · ~k
)2 (3.102)
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We write ~k · ~r = kr cos θ and the long range potential becomes:

vLR (~r) =
−e2
(2π)3

∫

d3ke−ikr cos θ m2
V

k2 (k2 +m2
V ) cos2 θ

=
4π

(2π)3

∫ ∞

0

dk
m2

V

(k2 +m2
V )

∫ 1

0

dx
cos (krx)

x2
(3.103)

The integral diverges both at small x and at large k. The divergence at small
x contributes an infinite term which is independent of r. This can be seen
by making a subtraction, that is, by evaluating vLR (~r) − vLR (~r0). Indeed,
we have:
∫ 1

0

cos (krx) − cos (kr0x)

x2
dx = − cos kr − krSi (kr) + cos kr0 + kr0Si (kr0)

(3.104)
so that:

vLR (~r) = vLR (~r0) −
4πe2

(2π)3
m2

V r

∫ Λr

0

dy
1

(y2 +m2
V r

2)
(− cos y − ySi (y))

(3.105)
Except for regions where mV r . 1, we can approximate the function cos y+
ySi (y) by its asymptotic value π

2
y and, adding the short range part (3.101),

the potential becomes:

vLR (~r) = vLR (~r0) −
e2

4πr
e−mV r +

e2m2
V

8π
r ln

Λ2 +m2
V

m2
V

(3.106)

where a sharp cut-off Λ was introduced to make the k-integral converge at
large k. As discussed in Sects.3.3.7 and 3.6, the ultraviolet divergence is an
artifact of the London limit.

Equal and opposite electric charges are thus confined by a linearly rising
potential. Let us define the string tension σ by writing the potential in the
form V (r) = − e2

4π
e−mV r

r
+ σr. The London limit of the Landau-Ginzburg

model produces a string tension equal to:

σ =
e2m2

V

8π
ln

Λ2 +m2
V

m2
V

=
n2π

2
v2 ln

Λ2 +m2
V

m2
V

(3.107)

where we used the relation eg = 2nπ between the magnetic and electric
charges. The string tension may be compared to the prediction (3.57) ob-
tained in the Landau-Ginzburg model, without taking the London limit,
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namely:

∂ER (c, s)

∂z
= 2πv2

∫ ∞

0

xdx

(

1

2x2

(

∂

∂x
xc

)2

+
1

2
s2c2 +

1

2

(

∂s

∂x

)2

+
m2

H

8m2
V

(

s2 − 1
)2

)

(3.108)
The latter depends on two parameters, namely v and the ratio mH

mV
of the

vector and Higgs masses. The cut-off in the expression obtained in the Lon-
don limit mimics the missing vanishing of the scalar field in the vicinity of
the vortex.

3.6.4 Chiral symmetry breaking

The gluon propagator (3.97) has been used by Suganuma and Toki as an
input for a Schwinger-Dyson calculation, in which the quark propagator is
dressed by a sum of rainbow diagrams in the Landau gauge [65]. The quark
gluon propagator was found to be strong enough to produce spontaneous
chiral symmetry breaking. The dependence of the gluon propagator (3.97)
on the direction of the vector nµ was averaged out. It was further modified at
large euclidean momenta so as to make it merge with the perturbative QCD
value, and at small momenta so as eliminate its divergence as k → 0. As a
result, the statement that the Landau-Ginzburg model explains the observed
chiral symmetry breaking is only qualitative. However, they did observe that,
when the vector mass mV = gv was small enough, both confinement and
chiral symmetry vanished. More recently, the relation between monopoles
and instantons has been studied in Abelian projected QCD, both analytically
and by lattice simulations [66, 67, 68, 69]. The topic is reviewed by Toki and
Suganuma [61].

3.7 The field-strength correlator

In these lectures, we have expressed 4-vectors and tensors in a Minkowski
space with the metric gµν = diag (1,−1,−1,−1), such that det g = −1.
Such ”Minkowski actions” are expressed in terms of vectors and tensors in
Minkowski space, and they are suitable for canonical quantization and for var-
ious representations of the evolution operator eiHt, by means of path integrals
for example. However, present day lattice calculations are limited to evalua-
tions of the partition function Tre−βH , which is expressed in terms of a func-
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tional integral of a Euclidean action. The latter is written in terms of vectors
and tensors in a Euclidean space with a metric gµν = diag (1, 1, 1, 1) = δµν ,
such that det g = +1. A Euclidean action is obtained when the functional
integral for the partition function is derived from the Hamiltonian of the
system. Crudely speaking, the Euclidean action which is thus obtained, is
related to the Minkowski action by making the µ = 0 components of vectors
and tensors imaginary. This is summarized in the table (B.1) of App.B. The
reader who is not familiar with the use of Euclidean actions, is referred to
standard textbooks [70, 71, 72].

The Euclidean form of the Landau-Ginzburg action (3.8) in the unitary
gauge, as given in App.B, has the form:

Ij (B, S) =

∫

d4x

(

1

2

(

∂ ∧B + Ḡ
)2

+
g2S2

2
B2 +

1

2
(∂S)2 +

1

2
b
(

S2 − v2
)2
)

(3.109)
In a 1998 paper [56], Baker, Brambilla, Dosch and Vairo suggested to use

this Landau-Ginzburg action in order to model the field strength correlator
which is observed in lattice calculations, in the absence of quarks. Formally,
the source term Ḡ appearing in the action, can be used as a source term for
the dual field tensor F̄ = ∂ ∧ B.

Let us illustrate the method by restricting ourselves to the London limit
(Sect. 3.6) in which the field S maintains its ground state value S = v. The
euclidean action reduces then to:

Ij (B) =

∫

d4x

(

1

2

(

∂ ∧ B + Ḡ
)2

+
m2

V

2
B2

)

(3.110)

The equation of motion of the field Bµ is:

− ∂ ·
(

∂ ∧ B + Ḡ
)

+m2
VB = 0 (3.111)

By considering the longitudinal and transverse parts, defined in App. A.3.1),
we can solve this equation in the form:

B =
1

−∂2 +m2
V

∂ · Ḡ (3.112)

Substituting back into the action, we obtain:

Ij =

∫

d4x

(

−1

2

(

∂ · Ḡ
) 1

−∂2 +m2
V

(

∂ · Ḡ
)

+
1

2
Ḡ2

)

(3.113)
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We may drop the second term which is simply due to the fact that the source
term appears quadratically in the action. Use (A.48) to write the action in
the form:

Ij =

∫

d4x
1

2
Ḡ

(

∂2K

−∂2 +m2
V

)

Ḡ =
1

2 (2π)4

∫

d4k Ḡ (k)

( −k2K

k2 +m2
V

)

Ḡ (−k)

(3.114)
where Kµν,αβ is the differential operator defined in (A.42). In the Euclidean
metric, it has the form:

Kµν,αβ =
1

∂2
(δµα∂ν∂β − δνα∂µ∂β + δνβ∂µ∂α − δµβ∂ν∂α) (3.115)

and its properties are listed in (B.8). From the form (3.110) of the action,
we see that Ḡ may be considered as a source term for the dual field strength
F̄ = ∂ ∧B. The Fourier transform of the dual field strength propagator can
be read off (3.114):

∫

d4xe−ik·x 〈T
[

F̄ (x) F̄ (0)
]〉

=
−k2K

k2 +m2
V

(3.116)

Let us define the function:

L (x) =
1

(2π)4

∫

d4k eik·x 1

k2 +m2
V

=
1

(2π)4

4π2

x

∫ ∞

0

k2

k2 +m2
V

J1 (kx) dk

=
m2

V

(2π)2

K1 (mV x)

mV x
(x ≡ |x|) (3.117)

The dual field strength propagator can be written as:

〈

T
[

F̄ (x) F̄ (0)
]〉

=
1

(2π)4

∫

d4k
−k2K

k2 +m2
V

= K∂2L (x) (3.118)

Since F̄ (x) = εF (x) and since, in the euclidean metric, we have εKε = E =
G−K, the field strength propagator is:

〈T [F (x)F (0)]〉 = (G−K) ∂2L (x) (3.119)

where Gµν,αβ = δµαδνβ − δµβδνα.
In order to conform to the conventional notation found in the literature,

we note that L is a function of x2 = xµxµ so that ∂µL = 2xµ
dL
dx2 . Substituting
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the form (3.115) into the expression (3.119), we find that the field strength
propagator can be written in the form:

〈T [Fµν (x)Fαβ (0)]〉 = (δµαδνβ − δµβδνα) ∂2L

− 2 (δµα∂νxβ − δνα∂µxβ + δνβ∂µxα − δµβ∂νxα)
dL

dx2
(3.120)

The contention of Baker, Brambilla, Dosch and Vairo [56] is that this field
strength propagator can be compared to the gauge invariant field strength
correlator 〈g2Fµν (x)U (x, 0)Fαβ (0)U (0, x)〉 which is measured on the lattice
[73, 74] and which is usually parametrized in terms of two functions D (x2)
and D1 (x2):

〈

g2Fµν (x)U (x, 0)Fαβ (0)U (0, x)
〉

= (δµαδνβ − δµβδνα) g2D
(

x2
)

+
1

2
(δµα∂νxβ − δνα∂µxβ + δνβ∂µxα − δµβ∂νxα) g2D1

(

x2
)

(3.121)

By comparing the expressions (3.120) and (3.121), the Landau-Ginzburg
model makes the following predictions, in the London limit, for the func-
tions D (x2) and D1 (x2):

g2D
(

x2
)

= ∂2S = δ (x) −m2
VL (x) = δ (x) − m4

V

(2π)2
K1 (mV x)

mV x

=
m2

V

2π2x2

(

2K1 (mV x)

mV x
+K0 (mV x)

)

(3.122)

:

g2D1

(

x2
)

= −4
dS

dx2
=

m2
V

2π2x2

(

2K1 (mV x)

mV x
+K0 (mV x)

)

(3.123)

The cooled lattice data can be fitted, in the range 0.1 fm ≤ x ≤ 1 fm
with the parametrization:

D
(

x2
)

= Ae
− x

Tg +
a

x4
e
− x

Tp D1

(

x2
)

= Be
− x

Tg +
b

x4
e
− x

Tp x = |x|

A = 128 GeV 4 B = 27 GeV 4 a = 0.69 b = 0.46

Tg = 0.22 fm Tp = 0.42 fm (3.124)

The 1
x4e

− x
Tp terms are negligible when x > 0.2 fm and, since the London limit

is unreliable at small x, we neglect these terms for the comparison. Even so,

64



the fit to the shape is qualitative at best. The exponential decrease of the
correlator allows us to make the identification mV ≃ 1

Tg
= 0.9 GeV , which is

of the same order of magnitude as the values quoted in Sect.3.4 and obtained
by fitting the profiles of the electric field and magnetic currents to lattice
data. The reader is referred to the 1998 paper of Baker, Brambilla, Dosch
and Vairo [56] for the improvements obtained beyond the London limit.

3.8 The London limit expressed in terms of

a Kalb-Ramond field

The confinement of static electric charges was modeled in Sect.3.6 in the
London limit of the Landau-Ginzburg model. The same confining force is
obtained in terms of the following model action:

IjJ (A,Φ) =

∫

d4x

(

−1

2

(

∂ · Φ̄
)2 − 1

2
(∂ ∧A−mΦ)2 − j · A−mG · Φ

)

(3.125)
which is expressed in terms of an antisymmetric tensor field Φµν = −Φνµ and
its dual Φ̄, often referred to as a Kalb-Ramond field. In this action, m is a
mass parameter, Aµ is the gauge field which couples to the electric current
jµ and Jµν = −Jνµ is an antisymmetric source term for the field Φ. The
latter is introduced so as to maintain the gauge invariance discussed below.
The action (3.125) was studied in 1974 by Kalb and Ramond in the context
of interactions between strings [75]. The duality transformation which leads
to the use of Kalb-Ramond fields is proposed in the 1984 and 1994 papers of
Orland [76, 77]. Confining lagrangians are also expressed in terms of Kalb-
Ramond fields in the 1996 paper of Hosek [78]. In 2001, Ellwanger and
Wschebor proposed a similar action to model low energy QCD and they
showed that it confines [79, 80]. A linear confining potential was also derived
from it in the 2002 paper of Deguchi and Kokubo [81].

Let us show that this action is equivalent to the London limit of the
Landau-Ginzburg action. The kinetic term of the action (3.134) is often
written in the literature in terms of the antisymmetric tensor:

Fαβγ = ∂αΘβγ + ∂βΘγα + ∂γΘαβ F 2 ≡ 1

6
FαβγF

αβγ (3.126)
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It is simple to check that:

− 1

2

(

∂ · Θ
)2

=
1

12
FαβγF

αβγ ≡ 1

2
F 2 (3.127)

so that the action (3.134) is often written in the form [75]:

Ij (Θ) =

∫

d4x

(

1

2
F 2 − m2

2
Θ2 −mGΘ

)

(3.128)

3.8.1 The double gauge invariance

The action (3.125) is invariant under the usual abelian gauge transformation:

A→ A+ (∂α) (3.129)

It is however, also invariant under the joint gauge transformation:

A→ A+ L Φ → Φ +
1

m
(∂ ∧ L) (3.130)

because ∂ · ∂ ∧ L = 0. In the presence of the sources jµ and Jµν , the double
gauge invariance is maintained, provided that the sources satisfy the (com-
patible) equations:

∂ · j = 0 ∂ ·G = j (3.131)

The second gauge invariance relates the source term J to the electric current
j. We can choose L = −A so as to write the action in a form in which the
double gauge invariance is explicit:

Ij (A,Φ) =

∫

d4x

(

−1

2

(

∂ · Φ̄
)2 − 1

2
(∂ ∧ A−mΦ)2 +G (∂ ∧ A−mΦ)

)

(3.132)
We can define an antisymmetric field Θµν :

∂ ∧ A−mΦ = −mΘ Θ = Φ − 1

m
∂ ∧A (3.133)

The field Θµν has the property of being invariant under the gauge transfor-
mation (3.130). Noting that ∂ · Φ̄ = ∂ · Θ, the action (3.132) can be written
as a functional of Θ alone, namely:

Ij (Θ) =

∫

d4x

(

−1

2

(

∂ · Θ
)2 − m2

2
Θ2 −mGΘ

)

(3.134)
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This is equivalent to a choice of gauge in which the gauge field Aµ is absorbed
by the field Θµν .

We can use (A.49) to write the action in the form:

Ij (Θ) =

∫

d4x

(

1

2
Θ
(

E∂2 −m2
)

Θ −mGΘ

)

=

∫

d4x

(

1

2
Θ
(

E
(

∂2 +m2
)

−m2K
)

Θ −mGΘ

)

(3.135)
where K and E are the longitudinal and transverse projectors (A.42). The
action is stationary with respect to variations of Θ if:

(

E
(

∂2 +m2
)

−m2K
)

Θ = mG Θ =

(

E

∂2 +m2
− K

m2

)

mG (3.136)

We can eliminate Θ from the action, to get:

Ij = −
∫

d4x
1

2
G

(

m2E

∂2 +m2
−K

)

G

=

∫

d4x

(

−1

2

(

∂ · Ḡ
) 1

(∂2 +m2)

(

∂ · Ḡ
)

− 1

2
Ḡ2

)

(3.137)

This form is identical to the expression (3.92) obtained in the London
limit of the Landau-Ginzburg model, with m = mV . The source term G
satisfies the equation ∂ · G = j in both cases, and a straight line string
G = 1

(n·∂)
(n ∧ j) leads to the same confining potential (3.106). This is not a

coincidence, because we shall next display a so-called duality transformation,
by means of which the Landau-Ginzburg model can be expressed in terms of
a Kalb-Ramond field (not only in the London limit).

3.8.2 The duality transformation

Let us show that the Landau-Ginzburg model can be expressed in terms of
an antisymmetric tensor field Θ. For this purpose, we add to the Landau-
Ginzburg action (3.8) the term:

m2

2

(

Θ̄ +
1

m

(

∂ ∧ B + Ḡ
)

)2

(3.138)

where m is a constant mass. Adding such a term is permissible, because the
equation of motion of the field Θ simply makes the added term vanish. The
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resulting action is:

Ij (Θ, B, S, ϕ) =

∫

d4x

{

−1

2

(

∂ ∧ B + Ḡ
)2

+
g2S2

2
(B + ∂ϕ)2 +

1

2
(∂S)2 − 1

2
b
(

S2 − v2
)2

+
m2

2

(

Θ̄ +
1

m

(

∂ ∧B + Ḡ
)

)2
}

(3.139)

The added term is chosen such that the term −1
2

(

∂ ∧ B + Ḡ
)2

cancels. We
are left with the action:

Ij (Θ, B, S, ϕ) =

∫

d4x

{

m2

2
Θ̄2 +mΘ̄ (∂ ∧ B) +mḠΘ̄ +

g2S2

2
(B + ∂ϕ)2 +

1

2
(∂S)2 − 1

2
b
(

S2 − v2
)2
}

(3.140)
The identities (A.28) and (A.46) allow us to write:

−m

∫

d4xC
(

∂ · Θ̄
)

= m

∫

d4x (B + ∂ϕ)
(

∂ · Θ̄
)

(3.141)

so that the action can be cast into the form:

Ij (Θ, B, S, ϕ) =

∫

d4x







g2S2

2

(

B + ∂ϕ−m

(

∂ · Θ̄
)

g2S2

)2

− m2

2g2S2

(

∂ · Θ̄
)2

+
m2

2
Θ +mḠΘ

2
+

1

2
(∂S)2 − 1

2
b
(

S2 − v2
)2
}

(3.142)

The first term of the action can be dropped because it vanishes when the
equation of motion for the field B is satisfied. The remaining action is:

Ij (Θ, S) =

∫

d4x

(

− m2

2g2S2

(

∂ · Θ̄
)2

+
m2

2
Θ +mḠΘ

2
+

1

2
(∂S)2 − 1

2
b
(

S2 − v2
)2
)

(3.143)
This action, expressed in terms of the Kalb-Ramond field Θ, is identical to
the action (3.8) of the Landau-Ginzburg model. In the London limit, where
S = v, we can choose m = v and the action becomes identical to the Kalb-
Ramond action (3.134).

The transformation of the action Ij (Θ, S), expressed in terms of a Kalb-
Ramond field Θµν , into an action Ij (Θ, B, S, ϕ) which depends on the ”dual”
vector field Bµ is called a duality transformation. It is widely used in the
literature [82, 83],[80, 81]. [79, 80].
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3.8.3 The quantification of the massive Kalb-Ramond
field

To visualize the physical content of the action (3.134), let us express the Kalb

Ramond field Θµν in terms of two cartesian 3-dimensional fields ~e and ~h:

ei = −Θ0i =
1

2
ε0ijkΘjk hi = −Θ

0i
= −1

2
ε0ijkΘjk (3.144)

It is an easy exercise to check that:

− 1

2

(

∂ · Θ
)2

= −1

2

(

~∇ · ~h
)2

+
1

2

(

∂t
~h+ ~∇× ~e

)2

(3.145)

The source term Gµν can, in turn, be written in terms of the two cartesian
3-dimensional vectors ~Est and ~Hst defined in (2.90):

Ei
st = −G0i =

1

2
ε0ijkḠjk H i

st = −1

2
ε0ijkGjk = −Ḡ0i (3.146)

G ·Φ = −~e · ~Est +~h · ~Hst ~∇ · ~Est = ρ − ∂t
~Est − ~∇× ~Hst = ~j (3.147)

where jµ =
(

ρ,~j
)

is the electric current.

The action (3.134) can thus be broken down to:

Iρ,~j

(

~e,~h
)

=

∫

d4x

{

1

2

(

∂t
~h+ ~∇× ~e

)2

+
m2

2
~e2 − 1

2

(

~∇ · ~h
)2

− m2

2
~h2

+m~e · ~Est −m~h · ~Hst
}

(3.148)

No time derivative acts on the field ~e so that it acts as the constraint:

~∇×
(

∂t
~h + ~∇× ~e

)

+m2~e = −m~Est (3.149)

The conjugate of the field ~h is:

~π = ∂t
~h+ ~∇× ~e (3.150)

and the conjugate of the field S is:

P = (∂tS) (3.151)

69



Taking the constraint (3.149) into account, the hamiltonian, or classical en-
ergy, is:

H
(

~π,~h
)

=

∫

d3r
(

~π ·
(

∂t
~h
)

+ P (∂tS) − L
)

=

∫

d3r

[

~π2

2
+

1

2m2

(

~∇× ~π +m~Est
)2

+
1

2

(

~∇ · ~h
)2

+
1

2
m2~h2 +m~h · ~Hst

]

(3.152)
In the absence of sources, the classical energy is a sum of positive terms.

3.8.4 The elementary excitations

Let us expand the hamiltonian (3.152) to second order in the fields around

their vacuum values S = v, ~π = ~h = 0, in the absence of sources. The
Hamiltonian reduces to:

H
(

~π,~h
)

=

∫

d3r

[

~π2

2
+

1

2m2

(

~∇× ~π
)2

+
1

2

(

~∇ · ~h
)2

+
1

2
m2~h2

]

=

∫

d3r

[

1

2m2
~πT

(

−∇2 +m2
)

~πT +
1

2
m2~h2

T +
~π2

L

2
+

1

2
~hL

(

−∇2 +m2
)

~hL

]

(3.153)
where we used (A.84).

As in Sect.3.10, we expand the field ~h and its conjugate ~π on the plane
wave basis (3.169):

hi (~r) =
1√
2

∑

ka

αka

(〈

~ri
∣

∣

∣

~ka
〉

a~ka + a†~ka

〈

~ka |~ri
〉)

= ~hL
i (~r) + ~hT

i (~r)

πi (~r) =
1

i
√

2

∑

ka

1

αka

(〈

~ri
∣

∣

∣

~ka
〉

a~ka − a†~ka

〈

~ka |~ri
〉)

= ~πL
i (~r) + ~πT

i (~r)

(3.154)
where the transverse and longitudinal parts correspond respectively to the
a = 1, 2 and a = 3 contributions. If we assume boson commutation rules
[

a~ka, a
†
~k′b

]

= δ~k,~k′δab, the fields ~h and ~π become quantized:

[

πi (~r) , hj (~r′)
]

= δijδ (~r − ~r′) (3.155)
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Upon substitution of the expansion (3.154) into the hamiltonian (3.153), we

find that the following coefficients αka cancel the
(

a~kaa−~ka + a†~ka
a†−~ka

)

terms

in the hamiltonian:

αk,a=1,2 =
1

(

~k2 +m2
)

1

4

αk,a=3 =
1

m

(

~k2 +m2
)

1

4

(3.156)

With these coefficients, the hamiltonian (3.153) acquires the diagonal form:

H =
∑

~ka

√

~k2 +m2

(

a†~k′b
a~ka +

1

2

)

(3.157)

so that the elementary excitations of the massive Kalb-Ramond hamiltonian
consists of three vector particles of mass m, which is exactly the same as
the elementary excitations of the Landau-Ginzburg model in the London
limit. However, in the limit m → 0 of vanishing mass, the transverse field
disappears and only one particle of mass m subsists.

• Exercise: Let F̄µ be the vector which is the dual form of the tensor
Fαβγ :

F̄ µ =
1

6
εµαβγFαβγ F αβγ = εαβγµF̄µ F̄ 2 = −F 2 (3.158)

Note that the duality transformation F → F̄ of tensors with an odd
number of indices is reversible without a change in sign (App. A.5).
Show that the components of the vector F̄ µ are:

F̄ 0 = −~∇ · ~h F̄ i = ∂th
i +
(

~∇× ~e
)i

(3.159)

Show that, when m = 0, the lagrangian (3.148) can be expressed in
terms of the four fields F̄ µ. The quantification of the fields in this limit
is discussed in the 1974 paper of Kalb and Ramond [75].

3.8.5 The Nambu hierarchy of gauge potentials

The kinetic term of the Kalb-Ramond action (3.128) is written in terms of
an antisymmetric field tensor Fαβγ and its associated gauge potential Θµν .
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Nambu has displayed a hierarchy of field tensors Fµν, Fαβγ , ... which can be
expressed in terms of gauge potentials Aµ, Aµν , ... [84]:

Fµν = ∂µAν − ∂νAµ Fµνλ =
∑

cycl

∂µAνλ Fµνλρ =
∑

cycl

∂µAνλρ (3.160)

The respective lagrangians:

L = −1

4
FµνF

µν + gAµj
µ

L = − 1

12m2
FµνλF

µνλ + gAµνj
µν

L = − 1

48m2
FµνλρF

µνλρ + gAµνλj
µνλ (3.161)

are invariant under the gauge transformations:

Aµ → Aµ+(∂µΛ) Aµν → Aµν+(∂µΛν − ∂νΛµ) Aµνλ → Aµνλ+
∑

cycl

(∂µΛνλ)

(3.162)
provided that the currents are conserved:

∂µj
µ = ∂µj

µν = ∂µj
µνλ = 0 (3.163)

3.9 The hamiltonian of the Landau-Ginzburg

model

Consider the action (3.15). In the unitary gauge, ψ = S is a real field and
the action reduces to:

Ij

(

~B, χ, S
)

=

∫

d4x

[

1

2

(

−∂t
~B − ~∇χ + ~Hst

)2

− 1

2

(

−~∇× ~B + ~Est

)2

−g
2S2

2
~B2 +

g2S2

2
χ2 +

1

2
(∂tS)2 − 1

2

(

~∇S
)2

− 1

2
b
(

S2 − v2
)2
]

(3.164)

The constraint imposed by χ is:

g2S2χ+ ~∇ ·
(

−∂t
~B − ~∇χ + ~Hst

)

= 0 (3.165)
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The conjugate momentum to the field ~B:

δI

δ
(

∂t
~B
) =

(

∂t
~B + ~∇χ− ~Hst

)

= − ~H (3.166)

The minus sign on the right hand side is inserted in order to conform with
the definition (2.91) of the magnetic field. The momentum conjugate of the
field S is:

P =
δI

(∂tS)
= (∂tS) (3.167)

Taking the constraint (3.165) into account, the hamiltonian, or classical en-
ergy, is:

H
(

~H, ~B, P, S
)

=

∫

d3r
(

− ~H
(

∂t
~B
)

+ P (∂tS)
)

− I

=

∫

d3r

[

1

2
~H2 +

1

2

(

−~∇× ~B + ~Est
)2

+
g2S2

2
~B2 +

1

2g2S2

(

~∇ · ~H
)2

− ~H · ~Hst

+
1

2
P 2 +

1

2

(

~∇S
)2

+
1

2
b
(

S2 − v2
)2
]

(3.168)

In the absence of sources, the energy is a sum of positive terms.

3.10 The elementary excitations of the Landau-

Ginzburg model

Vector fields can be expanded in the plane wave basis:

〈

~ri
∣

∣

∣

~ka
〉

=
1√
V
ei~k·~rei

(a)

(

~k
) 〈

~ka |~ri
〉

=
1√
V
e−i~k·~rei

(a)

(

~k
)

(3.169)

where the vectors ~e(a=1,2,3) are orthogonal unit vectors with ~e(3) parallel to ~k:

~e(3) =
~k

k
~e(a) × ~e(b) = εabc~e(c) (ε123 = −ε213 = 1) (3.170)
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and where V is the volume in which the plane waves are normalized. The
basis (3.169) is complete and orthogonal:

∑

~ka

〈

~ri
∣

∣

∣

~ka
〉〈

~ka |~r′j
〉

= δ (~r − ~r′) δij

∫

d3r
∑

i

〈

~ka |~ri
〉〈

~ri
∣

∣

∣

~k′b
〉

= δ~k~k′δab

(3.171)

The fields ~B and ~H can be expanded in this basis:

Bi (~r) =
1√
2

∑

ka

αka

(〈

~ri
∣

∣

∣

~ka
〉

a~ka + a†~ka

〈

~ka |~ri
〉)

= Ci
L (~r) + Ci

T (~r)

H i (~r) =
1√
2

∑

ka

i

αka

(〈

~ri
∣

∣

∣

~ka
〉

a~ka − a†~ka

〈

~ka |~ri
〉)

= H i
L (~r) +H i

T (~r)

(3.172)

The longitudinal and transverse parts ~BL and ~BT of ~B correspond respec-
tively to the contributions of a = 3 and a = 1, 2. We have ~∇× ~BL = 0 and
~∇ · ~BT = 0. Similarly for the longitudinal and transverse parts of ~H .

If we impose boson commutation rules on the aka and a†ka coefficients:

[

aka, a
†
k′b

]

= δ~k~k′δab (3.173)

the fields ~B and ~H become quantized:

[

H i (~r) , Bj (~r′)
]

= i 〈~ri |~r′j 〉 = iδijδ (~r − ~r′) (3.174)

The scalar field may be similarly quantized:

S (~r) =
1√
2

∑

k

αk

(〈

~r
∣

∣

∣

~k
〉

b~k + b†~k

〈

~k |~r
〉)

P (~r) =
1

i
√

2

∑

k

αk

(〈

~r
∣

∣

∣

~k
〉

b~k − b†~k

〈

~k |~r
〉)

[P (~r) , S (~r′)] = 〈~r|~r′〉 = δ (~r − ~r′) (3.175)

The elementary excitations of the vacuum, in the Landau-Ginzburg model,
may be obtained by expanding the fields to second order in the vicinity of
their vacuum values S = v, ~B = ~H = 0 and in setting the sources ~Est and
~Hst to zero. To second order in the fluctuating parts, the hamiltonian can
be written in the form:

H
(

~H, ~C, P, S
)

=

∫

d3r

[

+
1

2
~H2

T +
1

2
~BT
(

−~∇2 +m2
V

)

~BT +
1

2m2
V

~HL
(

−∇2 +m2
V

)

~HL +
m2

V

2
~B2

L
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+
1

2
P 2 +

1

2

(

~∇S
)2

+
1

2
m2

H (S − v)2
]

(3.176)

where we used (A.84) and where mH and mV are the Higgs and vector
masses (3.10) and (3.11). If we substitute the expansions (3.172) into the
hamiltonian (3.176), we can choose the coefficients α~ka such that the terms
(

a~kaa−~ka + a†~ka
a†
−~ka

)

vanish, and the hamiltonian reduces to:

H =
∑

~ka

√

~k2 +m2
V

(

a†~ka
a~ka +

1

2

)

+
∑

~k

√

~k2 +m2
H

(

b†~kb~k +
1

2

)

(3.177)

The elementary excitations of the Landau-Ginzburg model consists of three
vector particles with mass mV and a scalar particle with mass mH .

The appearance of massive vector particles with masses barely higher
than 1 GeV (see the values of the estimated vector and Higgs masses in Sect.
3.4) has been invoked to criticize the dual superconductor model. Indeed,
as we shall see in Sect. 5.1, the Higgs field is not a color singlet so that
the model predicts the existence of freely propagating particles with non-
vanishing color.

• Exercise: show that the coefficients αka are:

αk,a=1,2 =
(

~k2 +m2
V

) 1

4

αk,a=3 =
1

m

(

~k2 +m2
V

) 1

4

(3.178)

Show that, in the limitmV → 0, the field ~HL vanishes and that ~∇· ~B = 0
so that only two massless vector particles remain.

3.11 The two-potential Zwanziger formalism

In sections 2.2 and 2.11, we saw that, in the presence of both electric and
magnetic currents, electrodynamics could be expressed either in terms of a
gauge potential Aµ associated to the field strength F = ∂ ∧ A − Ḡ or a
gauge potential Bµ associated to the dual field strength F̄ = ∂ ∧ B + Ḡ.
The corresponding actions (2.13) and (2.88) involve non-local string terms.
In 1971, Zwanziger wrote a beautiful paper in which he proposed a local
lagrangian which uses two potentials Aµ and Bµ [48]. We shall apply his
formalism to the Landau-Ginzburg action of a dual superconductor. The
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theory was further developed, in particular its Lorentz invariance, by several
authors. For a review see the 1979 paper of Brandt, Neri and Zwanziger [85].
The Lorentz invariance is also discussed in the more recent 1998 paper of
Gubarev, Polikarpov and Zakharov [86]. Other aspects of the formalism are
discussed in the 1976 and 1979 papers of Blagojevic and Senjanovic [87, 88].
We shall show that, when applied to a dual superconductor, the Zwanziger
action leads to the form (3.8) of the Landau-Ginzburg action.

3.11.1 The field tensor F µν expressed in terms of two

potentials Aµ and Bµ

Zwanziger writes the components n ·F and n · F̄ of the field strength tensor,
along a given fixed 4-vector nµ, in terms of two potentials, namely:

n · F = n · (∂ ∧ A) n · F̄ = n · (∂ ∧ B) (3.179)

He then expresses the field strength tensor F in terms of these components,
using the identity (A.38):

F =
1

n2

(

n ∧ (n · F ) − n ∧
(

n · F
)

)

=
1

n2

(

n ∧ (n · (∂ ∧A)) − n ∧ (n · (∂ ∧ B))
)

(3.180)

and the dual tensor is:

F̄ =
1

n2

(

n ∧ (n · (∂ ∧A)) + n ∧ (n · (∂ ∧B))
)

(3.181)

The Maxwell equations ∂ · F = j and ∂ · F̄ = jmag can be satisfied with
potentials Aµ and Bµ which satisfy the equations:

1

n2

(

(n · ∂)2A− (n · ∂) ∂ (n · A) − n (n · ∂) (∂ · A) + n∂2 (n ·A) + (n · ∂)
(

n · ∂ ∧ B
))

= j

1

n2

(

(n · ∂)2B − (n · ∂) ∂ (n · B) − n (n · ∂) (∂ · B) + n∂2 (n ·B) − (n · ∂)
(

n · ∂ ∧A
))

= jmag

(3.182)
where we used successively (A.16), (A.15) and (A.19).
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• Exercise: Choose nµ to be space-like and define:

Aµ =
(

φ, ~A
)

Bµ =
(

χ, ~B
)

nµ = (0, ~n) ~n · ~n = 1 (3.183)

Show that (3.180) and (3.181) break down to:

− (n · F )0 = ~n · ~E = − [n · (∂ ∧A)]0 = ~n ·
(

−~∇φ− ∂t
~A
)

(n · F )i = −
(

~n× ~H
)

i
= [n · (∂ ∧ A)]i = −

(

~n×
(

~∇× ~A
))

i

(

n · F
)0

= −~n · ~H = [n · (∂ ∧B)]0 = ~n ·
(

−~∇χ− ∂t
~B
)

(

n · F
)i

=
(

~n× ~E
)

i
= [n · (∂ ∧B)]i =

(

~n×
(

~∇× ~B
))

i
(3.184)

so that the potential ~A describes the longitudinal part of the electric
field and the transverse part of the magnetic field, whereas the po-
tential ~B describes the longitudinal part of the magnetic field and the
transverse part of the electric field. In this instance, the longitudinal
and transverse parts of the fields are defined relative to the vector ~n
and not relative to ~∇ as in (A.84).

3.11.2 The Zwanziger action applied to a dual super-
conductor

The Zwanziger action applied to a dual superconductor is:

Ij (A,B, S, ϕ) =

∫

d4x

[

− 1

2n2
(n · (∂ ∧A))2 − j · A

− 1

2n2
(n · ∂ ∧A) ·

(

n · ∂ ∧ B
)

+
1

2n2
(n · ∂ ∧B) ·

(

n · ∂ ∧ A
)

− 1

2n2
(n · (∂ ∧ B))2 +

g2S2

2
(B + ∂ϕ)2

+
1

2
(∂S)2 − 1

2
b
(

S2 − v2
)2
]

(3.185)

The first line describes the gauge field Aµ and its coupling to the electric
current jµ. The second line is an interaction between the two gauge potentials
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Aµ and Bµ. The third line describes the interaction of the gauge field Bµ

with the complex scalar field Seigϕ of the Landau-Ginzburg model. The last
term describes the dynamics of the order parameter S.

The action (3.185) is invariant under the following gauge transformation
of the field Aµ:

A→ A+ (∂α) (3.186)

It is also invariant under the joint gauge transformation:

B → B + (∂β) ϕ→ ϕ− β (3.187)

The electric current jµ might be caused by quarks, in which case the term
−j · A would be replaced by the term:

q̄ [i (∂µ + ieA) γµ −m] q (3.188)

When this is done, the action becomes a local action for a system of confined
Dirac particles with electric charges.

The following are useful identities:

∫

d4x (n · ∂ ∧ A) ·
(

n · ∂ ∧B
)

= −
∫

d4x (n · ∂ ∧B) ·
(

n · ∂ ∧ A
)

=

∫

d4x εµναβAµnν (n · ∂) ∂αBβ

= −
∫

d4x A (n · ∂)
[

n · ∂ ∧ B
]

= +

∫

d4x B (n · ∂)
[

n · ∂ ∧ A
]

(3.189)

and:

−
∫

d4x [n · (∂ ∧A)] [n · (∂ ∧ A)]

=

∫

d4x
[

A (n · ∂)2A− A (n · ∂) ∂ (n ·A) −An (n · ∂) (∂ · A) + (A · n) ∂2 (n · A)
]

(3.190)

3.11.3 Elimination of the gauge potential Aµ

Let us show how to eliminate the field Aµ in order to reduce the action
(3.185) to the form (3.8) of the Landau-Ginzburg action. Because the theory
is invariant under the gauge transformation A→ A+(∂α), we can, following
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Zwanziger, add a gauge fixing term 1
2n2 [∂ (n · A)]2 to the action. After doing

this, and in view of the identities (3.189) and (3.190), the action (3.185) can
be written in the form:

Ij (A,B, S, ϕ) =

∫

d4x

[

1

2
AµM

µνAν + Aµ

[

1

n2
(n · ∂)

(

n · ∂ ∧B
)µ − jµ

]

− 1

2n2
(n · (∂ ∧ B))2

+
g2S2

2
(B + ∂ϕ)2 +

1

2
(∂S)2 − 1

2
b
(

S2 − v2
)2
]

(3.191)

where Mµν is the matrix:

Mµν =
1

n2
(n · ∂) [(n · ∂) gµν − ∂µnν − nµ∂ν ] (3.192)

The inverse matrix is:

M−1
µν =

n2

(n · ∂)2

(

gµν −
1

n2
nµnν −

1

∂2
∂µ∂ν

)

(3.193)

The field Aµ satisfies the equation of motion:

MµνAν = −
[

1

n2
(n · ∂)

(

n · ∂ ∧B
)µ − jµ

]

(3.194)

We can use the inverse matrix (3.193) to eliminate the field Aµ from the
action, which becomes:

Ij (B, S, ϕ) =

∫

d4x

[

−1

2
(∂ ∧B)2

− (∂ ∧B)
1

(n · ∂)n ∧ j − 1

2
jµ n2

(n · ∂)2

(

gµν −
1

n2
nµnν

)

jν

+
g2S2

2
(B + ∂ϕ)2 +

1

2
(∂S)2 − 1

2
b
(

S2 − v2
)2
]

(3.195)

where we used the property:

∂ν

(

n · ∂ ∧B
)ν

= 0 nν

(

n · ∂ ∧ B
)ν

= 0 (3.196)

as well as the second Zwanziger identity (A.39) for the ∂ ∧ B terms. The
action can finally be reduced to the form:

Ij (B, S, ϕ) =

∫

d4x

[

−1

2

(

(∂ ∧ B) +
1

(n · ∂)n ∧ j
)2
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+
g2S2

2
(B + ∂ϕ)2 +

1

2
(∂S)2 − 1

2
b
(

S2 − v2
)2
]

(3.197)

This is precisely the form (3.8) of the Landau-Ginzburg action, with a
straight-line string term Ḡ = 1

(n·∂)
n ∧ j.

There is however an apparent difference. The Landau-Ginzburg action
(3.8) contains a non-local string term Ḡ which we may choose to be a string
which stems from a positive charge and terminates on a negative charge. In
the local Zwanziger action (3.185), the vector nµ is fixed and independent of
the position of the charges. This is a source of difficulties, because, when the
Zwanziger action is used with classical fields, it breaks Lorentz invariance, as
discussed at the beginning of Sect.3.11.

• Exercise: Consider projectors Kµν,αβ and Eµν,αβ defined, not in terms
of ∂µ as in (A.42), but in terms of the given vector nµ:

Kµν,αβ =
1

n2
(gµαnνnβ − gναnµnβ + gνβnµnα − gµβnνnα)

E = εKε Eµν,αβ =
1

4
εµνσρK

σρ,γδεγδαβ = εµνσρ

1

n2

(

gσγnρnδ
)

εγδαβ

(3.198)
Check that the projectors K and E satisfy the relations:

K2 = K E2 = −E KE = 0 K−E = G ε2 = −G (3.199)

Check that:

KF =
1

n2
n ∧ (n · F ) EF =

1

n2
n ∧

(

n · F
)

(3.200)

Show that the Zwanziger identity (A.38) can be expressed in the form
F = (K − E)F . Show that Zwanziger expresses the ”longitudinal”
part KF of the field strength F µν in terms of a vector potential Aµ

and the ”transverse” part EF in terms of the potential Bµ:

KF = K (∂ ∧ A) EF = −E∂ ∧ B (3.201)

• Exercise: Show that, if Sµν and T µν are antisymmetric tensors , we
have:

SKT =
1

n2
(n · S) (n · T ) SET = S̄KT̄ =

1

n2

(

n · S̄
) (

n · T̄
)
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SKT̄ =
1

n2
(n · S)

(

n · T̄
)

= −S̄ET SET̄ = −S̄KT = − 1

n2

(

n · S̄
)

(n · T )

(3.202)
Use ∂ · ∂ ∧ A = 0 to check that:

∂ ·
(

K∂ ∧ A
)

= ∂ ·
(

E∂ ∧A
)

(3.203)

Show that the Zwanziger action (3.185) can be written in the form:

Ij,jmag
(A,B) =

∫

d4x

{

−1

2
(∂ ∧ A)K (∂ ∧ A) − 1

2
(∂ ∧B)K (∂ ∧B)

−1

2
(∂ ∧A)K∂ ∧ B +

1

2
(∂ ∧ B)K∂ ∧A− j · A− jmag ·B

}

(3.204)

81



Chapter 4

Abelian gauge fixing

The formation of monopoles and their condensation in the QCD ground state
is a feature which is related to abelian gauge fixing, discussed in this chapter.
The gluon field acquires a singularity in the vicinity of points in space where
abelian gauge fixing fails and magnetic monopoles are formed there. The
ideas discussed in this chapter can be found in the 1974 and 1981 seminal
papers of Polyakov [89] and ’t Hooft [90, 91]. It is also very instructive
to read the Sect.23.3 (vol.2) of Weinberg’s Quantum Theory of Fields [52].
The formation of monopoles in QCD is still a subject of occasional debate
[92, 93]. The choice of the abelian gauge is, of course, not unique, and nor
is the corresponding definition of the monopoles. The recent gauge invariant
definition of monopoles, proposed by Gubarev and Zakharov [94, 95], is not
discussed in these lectures.

The dynamical formation of monopoles in the QCD ground state is not
explained by the ’t Hooft construction. A remarkable feature has however
been confirmed by lattice calculations [19, 20, 21, 25],[22, 23, 24], namely the
previously surmised condensation of monopoles in the QCD ground state.
The lattice calculations evaluate the vacuum expectation value of an opera-
tor which creates a magnetic monopole in an Abelian gauge. It is found that
the vacuum expectation value of this operator is non-zero in the confining
phase and zero in the deconfined phase, thereby signaling the condensation
of magnetic monopoles in the confining phase. This is one of the main moti-
vations for a phenomenological description of the QCD ground state in terms
of dual superconductors. The lattice calculations suggest that the conden-
sation of monopoles in the QCD ground state is remarkably independent of
the gauge fixing condition.
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The gluon field Aµ
a is a vector in color space. Of course, it would be nice

if we could make a gauge transformation at every space-time point x which
would rotate the gluon field so that only its diagonal components A3 and A8

would remain. This would reduce QCD to an abelian theory. The trouble is,
of course, that the gluon field has four components Aµ and that it is only
possible to align one component at a time. This is why a scalar field is most
often used to fix a gauge.

Let Φ (x) be a scalar field in the adjoint representation of SU (Nc), which
means that the field is a vector in color space with N2

c −1 components Φa (x).
The field can be written in the form:

Φ (x) = Φa (x)Ta (4.1)

where Ta are the N2
c − 1 generators of the SU (Nc) group. They are equal

to one half of the Pauli matrices in the case of SU (2) and to one half of the
Gell-Mann matrices in the case of SU (3). The field Φ (x) does not have to
be one of the fields appearing in the model lagrangian. The choice of Φ is
not innocent and will be discussed below. The orientation of the vector Φ (x)
in color space, at the space-time point x, defines a gauge. Different choices
of Φ lead to different choices of the gauge.

Consider how this is done in practice. Local rotations in color space are
generated by operators of the form:

Ω (x) = eiχa(x)Ta (4.2)

The operators Ω (x) are elements of the color SU (Nc) group. A local rota-
tion in color space is called a gauge transformation. The generators Ta are
traceless hermitian Nc ×Nc matrices, so that the field Φ (x) = Φa (x)Ta may
be viewed as a traceless matrix in color space. We can always perform a
gauge transformation (a rotation of the vector Φ) so as to diagonalize the
matrix Φ (x). This means, that there always exists a rotation Ω (x), such
that:

Ω (x) Φ (x) Ω† (x) = diag (λ1 (x) , λ2 (x) , ..., λNc
(x)) (4.3)

The gauge in which Φ (x) is diagonal is called an abelian gauge. The abelian
gauge depends, of course, on the choice of the scalar field Φ.

When Nc = 2, the abelian gauge is obtained by aligning the vector Φa (x)
along the color 3-axis:

Φ (x) → Ω (x) Φ (x)Ω† (x) = Φ′
3 (x)T3 =

1

2

(

Φ′
3 0

0 −Φ′
3

)

(4.4)
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When Nc = 3, two generators of the SU (3) group are diagonal, namely:

T3 =
1

2





1 0 0
0 −1 0
0 0 0



 T8 =
1

2
√

3





1 0 0
0 1 0
0 0 −2



 (4.5)

and the abelian gauge is obtained by aligning the vector Φa (x) along T3 and
T8 axes:

Φ (x) → Ω (x) Φ (x) Ω† (x) = Φ′
3 (x)T3 + Φ′

8 (x)T8

=
1

2







Φ′
3 + 1√

3
Φ′

8 0 0

0 −Φ′
3 + 1√

3
Φ′

8 0

0 0 − 2√
3
Φ′

8






(4.6)

Further gauge transformations, generated by two diagonal generators T3 and
T8, leave the diagonal form of Φ (x) invariant. Such rotations have the form
eiχ3T3+iχ8T8 = eiχ3T3eiχ8T8 and they belong to the residual U (1) × U (1) sub-
group of SU (3), called the maximal torus subgroup of SU (3).

4.1 The occurrence of monopoles in an abelian

gauge

There are points in space where the abelian gauge fixing becomes ill defined.
We shall see that such points, which are sometimes referred to as topological
defects, are sources of magnetic monopoles.

4.1.1 The magnetic charge of a SU (2) monopole

Consider the SU (2) case first. Let Ω (x) be the gauge transformation which
brings the field Φ (x) = Φa (x)Ta into diagonal form:

Φ = ΦaTa → ΩΦΩ† = λT3 =

(

λ 0
0 −λ

)

λ =
√

Φ2
1 + Φ2

2 + Φ2
3 (4.7)

The eigenvalues λ (x) of the matrix Φ (x) are, of course, gauge indepen-
dent1. A degeneracy of the eigenvalues of Φ (x) occurs when λ = 0. At any

1They do, however, depend on the choice of the field Φ (x).

84



one time, this implies that all three components Φa=1,2,3 (~r) should vanish,
and this can only occur at specific points ~r = ~r0 in space such that:

Φ1 (~r0) = 0 Φ2 (~r0) = 0 Φ3 (~r0) = 0 (4.8)

The three equations determine the three components (x0, y0, z0) of the
vector ~r0. At the point ~r0, defined by the equations (4.8), it is not possible
to define the gauge and we shall that the gluon field develops a singularity
at that point.

In the vicinity of the point ~r0, we can express Φ (~r) in terms of a Taylor
expansion:

Φ (~r) = Φa (~r)Ta = TaCab (xb − x0b) Cab =
∂Φa

∂xb

∣

∣

∣

∣

~r=~r0

(4.9)

The matrix Cab defines a coordinate system in which the field Φ (~r′) has the
form:

Φ (~r′) = x′aTa x′a = Cab (xb − x0b) (4.10)

In this coordinate system, the solution ~r0 of equation (4.8) is placed at the
origin, and the field Φ (~r) has the hedgehog shape displayed in Eq.(4.10). In
the following, we work in this coordinate frame and drop the primes on x′.

Let (r, θ, ϕ) be the spherical coordinates of the vector ~r (see App.A.6.3).
In spherical coordinates, the hedgehog field Φ (~r) = xaTa is represented by
the matrix:

Φ (~r) = xaTa = T1r sin θ cosϕ+ T2r sin θ sinϕ+ T3r cos θ

=
r

2

(

cos θ e−iϕ sin θ
eiϕ sin θ − cos θ

)

(4.11)

The matrix Ω which diagonalizes Φ is:

Ω (θ, ϕ) =

(

eiϕ cos θ
2

sin θ
2

− sin θ
2

e−iϕ cos θ
2

)

Ω† (θ, ϕ) =

(

e−iϕ cos θ
2

− sin θ
2

sin θ
2

eiϕ cos θ
2

)

(4.12)
Indeed, we can check directly that:

ΩΦΩ† =
r

2

(

1 0
0 −1

)

= rT3 (4.13)
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Now consider how the gluon field transforms under the same gauge trans-
formation2:

Aµ = AµaTa → Ω

(

Aµ +
1

ie
∂µ

)

Ω† ~A = ~AaTa → Ω

(

~A +
1

ie
~∇
)

Ω†

(4.14)

The expression of the gradient ~∇ in spherical coordinates is given by (A.112).

The vector Ω~∇Ω† is:

Ω~∇Ω† = ~er

(

Ω
∂

∂r
Ω†
)

+ ~eθ

(

Ω
∂

∂θ
Ω†
)

+ ~eϕ

1

r sin θ

(

Ω
∂

∂ϕ
Ω†
)

(4.15)

where the unit vectors ~e are defined in (A.110). From the explicit expression
(4.12) of Ω, we find:

Ω
∂

∂r
Ω† = 0

Ω
∂

∂θ
Ω† =

1

2

(

0 −eiϕ

e−iϕ 0

)

= −ieiϕT2

Ω
∂

∂ϕ
Ω† =

i

2

(

− cos θ − 1 eiϕ sin θ
e−iϕ sin θ cos θ + 1

)

= −i (1 + cos θ)T3 + i sin θ cosϕT1 − i sin θ sinϕT2 (4.16)

so that:

1

ie
Ω~∇Ω† =

1

e

(

−~eθT2e
iϕ − ~eϕ

1 + cos θ

r sin θ
T3 + ~eϕ

1

r
(cosϕT1 − sinϕT2)

)

(4.17)
The terms are all regular except for the term:

1

ie

(

Ω~∇Ω†
)

sg
= −1

e
~nϕ

1 + cos θ

r sin θ
T3 (4.18)

which becomes singular when θ → 0, that is, on the positive z-axis.

2The gauge transformation (3.9), defined in section 3.1, corresponds to a rotation
Ω = eigβ , in which the angle β is multiplied by the magnetic charge g. In the gauge
transformation (4.2), the angles χa are not multiplied by the coupling constant e. This is
why a factor 1

e
appears in the gauge transformation (4.14) whereas no such factor appears

in (3.9).
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Thus, in the abelian gauge, obtained by diagonalizing the field Φ (x), the

gluon field can be separated into a regular part ~AR and the singular part
(4.18):

~A = ~AaTa = ~AR
a Ta −

1

e
~nϕ

1 + cos θ

r sin θ
T3 (4.19)

Note that only the diagonal (abelian) part of the gluon field acquires a sin-
gular form. The singular part (4.18) has exactly the form (2.67) which a
gauge field acquires in the vicinity of a magnetic monopole situated at the
origin, with a Dirac string running along the positive z-axis. By comparing
the expressions (4.19) and (2.67), we see that the magnetic charge of the
monopole is equal to:

g = −4π

e
T3 (4.20)

Here e is the color electric charge, that is, the QCD coupling constant. This
is another instance of the Dirac quantization condition (2.80). In a way, the
result (4.20) is promising for low energy phenomena because perturbation
theory points to a divergence of the QCD coupling constant e at low energy
and we may expect g to be better behaved. The way the running coupling
constant e and g manage to maintain a constant product eg is discussed in
2001 papers of the Russian group [96, 97]. In short, we have shown that, in
the vicinity of points where the eigenvalues of the matrix Φ (x) are degener-
ate, that is, at points where the abelian gauge is ill defined, the abelian part
of the gluon field behaves as if a monopole with magnetic charge g = −4π

e
T3

was sitting there.

• Exercise: Consider the gauge transformation Ω′ = Ω (θ + π, ϕ). Show
that it also diagonalizes Φ, such that Ω′ΦΩ

′† = −rT3 and that the
singular part of the transformed field Ω′AµΩ′† is 1

e
~nϕ

1−cos θ
r sin θ

T3 which
indicates the presence of a magnetic charge g = 4π

e
T3 with a string

running along the negative z-axis.

4.1.2 The magnetic charges of SU (3) monopoles

In the case of SU (3), there are two diagonal generators, namely T3 and T8,
given by (4.5). The abelian gauge is the one in which the field Φ = ΦaTa

acquires the diagonal form:

Φ = ΦaTa → ΩΦΩ† = diag (λ1,λ2,λ3) λ1 + λ2 + λ3 = 0 (4.21)
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Monopoles will occur at points in space where two eigenvalues become de-
generate. Indeed, consider the case where the first two eigenvalues are degen-
erate: λ1 = λ2 = λ

2
and λ3 = −λ. When the two eigenvalues λ1 and λ2 lie

close to each other, the matrix Φ may be considered as diagonal in all but
the SU (2) subspace defined by the almost degenerate eigenvalues:

Φ ≃ 1

2





λ+ ε3 ε1 − iε2

ε1 + iε2 λ− ε3
0

0 −2λ



 =
3
∑

a=1

ΦaTa + Φ8T8 (4.22)

Φ1 = ε1 Φ2 = ε2 Φ3 = ε3 Φ8 =
√

3λ (4.23)

Consider the rotation (or gauge transformation) Ω which brings this almost
diagonal matrix (4.23) into diagonal form:

Φ8T8 +

3
∑

a=1

ΦaTa → Ω

(

Φ8T8 +

3
∑

a=1

ΦaTa

)

Ω† = Φ8T8 +





ε 0 0
0 −ε 0
0 0 0





(4.24)
The rotation Ω simply orients the vector

∑3
a=1 ΦaTa in the T3 direction so

that the eigenvalue ε is:

ε =
√

Φ2
1 + Φ2

2 + Φ2
3 (4.25)

Degeneracies of the eigenvalues will occur at points ~r0 in space where:

Φ1 (~r0) = 0 Φ2 (~r0) = 0 Φ3 (~r0) = 0 (4.26)

These three equations define the three components (x0, y0, z0) of the position
vector ~r0, as in the SU (2) case. In the vicinity of the point ~r0, the field Φ (~r)
acquires the hedgehog shape (4.10):

Φ (~r′) =

3
∑

a=1

x′aTa + Φ8 (~r′)T8 x′a =

3
∑

b=1

Cab (xb − x0b) Cab =
∂Φa

∂xb

∣

∣

∣

∣

~r=~r0

(4.27)
We work in the coordinate frame x′a and drop the primes. The degeneracy
point is then placed at the origin of coordinates. In spherical coordinates,
the field is:

Φ (~r) = xaTa+Φ8 (~r)T8 = T1r sin θ cosϕ+T2r sin θ sinϕ+T3r cos θ+Φ8 (~r)T8
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=
r

2





cos θ e−iϕ sin θ
eiϕ sin θ − cos θ

0

0 0



+ Φ8 (~r)T8 (4.28)

The gauge transformation, which brings this matrix into diagonal form is:

Ω (θ, ϕ) =





eiϕ cos θ
2

sin θ
2

− sin θ
2

e−iϕ cos θ
2

0

0 1



 (4.29)

Under this gauge transformation, the gluon field becomes:

~A = ~AaTa → Ω

(

~A+
1

ie
~∇
)

Ω† (4.30)

The calculation of Ω~∇Ω† proceeds exactly as in the SU (2) case and we find:

1

ie
Ω~∇Ω† =

1

e

(

−~eθT2e
iϕ − ~eϕ

1 + cos θ

r sin θ
T3 + ~eϕ

1

r
(cosϕT1 − sinϕT2)

)

(4.31)
The second term becomes singular in the vicinity of the positive z-axis. The
gauge transformed gluon field ~A can therefore be separated into a regular
part ~AR and the singular part :

~A = ~AaTa = ~AR
a Ta −

1

e
~eϕ

1 + cos θ

r sin θ
T3 (4.32)

Thus, in the vicinity of points where the first two eigenvalues coincide, the
diagonal gluon ~A3 feels the presence of a monopole with magnetic charge
g = −4π

e
T3.

Consider next the case where the last two eigenvalues are degenerate:
λ2 = λ3 = λ and λ1 = −λ. When the two eigenvalues λ2 and λ3 lie close to
each other, the matrix Φ may be considered as diagonal in all but the SU (2)
subspace defined by the almost degenerate eigenvalues:

Φ ≃ 1

2





−2λ 0

0
λ+ ε3 ε1 − iε2

ε1 + iε2 λ− ε3



 = Φ8t8 +
3
∑

a=1

εata (4.33)

Φ1 = ε1 Φ2 = ε2 Φ3 = ε3 Φ8 =
√

3λ (4.34)
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where we defined:

t1 = T6 =
1

2





0 0 0
0 0 1
0 1 0



 , t2 = T7 =
1

2





0 0 0
0 0 −i
0 i 0





t3 = −1

2
T3+

√
3

2
T8 =

1

2





0 0 0
0 1 0
0 0 −1



 t8 = −
√

3

2
T3−

1

2
T8 =

1

2
√

3





−2 0 0
0 1 0
0 0 1





(4.35)
From here we proceed as in the previous case, with the replacements Ta → ta
for a = 1, 2, 3 and 8. The rotation Ω, which brings the matrix (4.34) to the
diagonal form, is:

Φ8t8 +
3
∑

a=1

Φata → Ω

(

Φ8t8 +
3
∑

a=1

Φata

)

Ω† = Φ8t8 +
1

2





0 0 0
0 ε 0
0 0 −ε





ε =
√

Φ2
1 + Φ2

2 + Φ2
3 (4.36)

It transforms the gluon field to:

~A = ~AaTa → Ω

(

~A+
1

ie
~∇
)

Ω†

= Ω ~AΩ† +
1

e

(

−~eθt2e
iϕ − ~eϕ

1 + cos θ

r sin θ
t3 + ~eϕ

1

r
(cosϕt1 − sinϕt2)

)

(4.37)

The second term becomes singular in the vicinity of the positive z-axis. The
gauge transformed gluon field ~A can therefore be separated into a regular
part ~AR and the singular part :

~A = ~AaTa = ~AR
a Ta −

1

e
~nϕ

1 + cos θ

r sin θ
t3

= ~AR
a Ta −

1

e
~nϕ

1 + cos θ

r sin θ

(

−1

2
T3 +

√
3

2
T8

)

(4.38)

where we expressed t3 in terms of T3 and T8. Again, it is only the diag-
onal gluons which become singular in the vicinity of the positive z-axis.
Thus, when the last two eigenvalues coincide, the diagonal gluon −1

2
~A3T3 +
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√
3

2
~A8T8 feels the presence of a monopole with magnetic charge g = −4π

e
t3 =

−4π
e

(

−1
2
T3 +

√
3

2
T8

)

.

In the final case where the first and third eigenvalues are degenerate, the
gluon field transforms to:

~A = ~AaTa → ~AR
a Ta +

1

e
~nϕ

1 + cos θ

r sin θ

(

1

2
T3 +

√
3

2
T8

)

(4.39)

and it is the diagonal gluon −1
2
~A3T3 −

√
3

2
~A8T8 which feels the presence of a

monopole with magnetic charge g = 4π
e

(

1
2
T3 +

√
3

2
T8

)

.

These results may be summarized by saying that the topological defects of
abelian gauge fixing, in the case of SU (3), are sources of magnetic monopoles,
with magnetic charges equal to:

g =
4π

e
(wa · T ) (4.40)

where wa=1,2,3 are the root vectors (C.14) of the color SU (3) group and T
is the vector (T3, T8). It is this observation which suggests the form of the
SU (3) Landau-Ginzburg (Abelian Higgs) model presented in Sect.5.1.

4.2 The maximal abelian gauge and abelian

projection

The choice of the field Φ (x), used to fix the gauge, is far from being a
trivial problem and the reader is referred to the 1981 paper of ’t Hooft for a
discussion of some appropriate and inappropriate choices [91]. Many different
choices have been used. Some are defined in terms of Polyakov loops on a
lattice [19, 20, 21],[25] some in terms of the lowest eigenvalue of the covariant
laplacian operator [98], some in terms of a ”maximal abelian gauge” [99].
Most of these choices are defined on the lattice. A discussion of abelian
gauge fixing on the lattice is beyond the scope of these lectures and we limit
the discussion to a brief description of the maximal abelian gauge, from which
92 % of the full string tension is obtained in the SU (2) case [16]. A useful
account of evidence for the occurrence of monopoles obtained from lattice
calculations in the maximal abelian projection, can be found in the 1997
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Cambridge lectures of Chernodub and Polikarpov [100]. The reader is also
referred to the Sect.4.10 of the extensive 2001 Physics Report of Bali [101]
and he may find it instructive to consult the 1999 thesis of Ichie [102, 103]
as well as the recent 2003 paper of Chernodub [26].

Consider color SU (3). The maximal abelian gauge attempts to minimize
the off-diagonal gluons. The gluon field Aµ can be expressed thus:

Aµ = Aµ
aTa = Aµ

3T3 + Aµ
8T8 +

3
∑

a=1

Cµ∗
a Ea + Cµ

aE−a (4.41)

In this form, the diagonal generators T3 and T8 are explicit and the charged
non-diagonal gluons Ca and C∗

a are expressed in terms of the generators E±a

defined in (C.8). Let us represent the diagonal generators T3 and T8 by
the two dimensional vector H = (T3, T8). The commutator of the covariant
derivative Dµ = ∂µ + ieAµ

aTa with the diagonal generators Hi=1,2 can be
expressed in terms of the root vectors ~wa, defined in (C.14):

[Dµ, Hi] = ie
3
∑

a=1

wai (C
∗µ
a Ea − Cµ

aE−a) (4.42)

The commutator [Dµ, Hi] singles out the off-diagonal part of the gluon field.
Let us calculate the trace:

R = tr

2
∑

i=1

[Dµ, Hi] [D
µ, Hi] = −e2tr

2
∑

i=1

3
∑

a,b=1

wiawibtr
(

C∗
aµEa − CaµE−a

)

(C∗µ
b Eb − Cµ

b E−b)

(4.43)
It is easy to check that:

trEaEb = 0 trEaE−b = δabNc (a, b) > 0 (4.44)

so that, using (C.15), we find:

R (x) = 2e2Nc

3
∑

a=1

|Cµ
a (x)|2 (4.45)

We see that, in a gauge which minimizes the field R (x), the intensity of the
charged gluons C∗µ

a (x) and Cµ
a (x) is minimized.
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-Let us seek this gauge. Let RΩ be the field R obtained by performing a
gauge transformation Dµ → ΩDµΩ† of the covariant derivative:

RΩ = tr
2
∑

i=1

[

ΩDµΩ†, Hi

] [

ΩDµΩ†, Hi

]

= tr
2
∑

i=1

[

Dµ,Ω
†HiΩ

] [

Dµ,Ω†HiΩ
]

(4.46)
We want R (x) to be stationary with respect to infinitesimal gauge transfor-
mations of the form Ω ≃ 1 + iχ, where χ = χaTa. To first order in χ, we
have Ω†HiΩ = Hi − i [χ,Hi] so that the first order variation of RΩ is:

R
(1)
Ω = −2itr

2
∑

i=1

[Dµ, [χ,Hi]] [D
µ, Hi] = 2itrχ

2
∑

i=1

[Hi, [Dµ, [D
µ, Hi]]] (4.47)

If this is to vanish for any χ = χaTa, we must have:

[Hi, [Dµ, [D
µ, Hi]]] = 0 (4.48)

In the SU (2) case, the vector Hi has only one component H1 = T3. The
maximal abelian gauge is the one which aligns the vector:

Φ = [Dµ, [D
µ, T3]] (4.49)

along the T3 axis.
Abelian projection in the continuum consists in making the corresponding

gauge transformation of the gluon field Aµ and in retaining only the diagonal
part. For example, in the expressions (4.19) and (4.32), this means setting to

zero the non-diagonal parts of ~AR
a Ta. The monopole singular part is retained

in this process.
In the case of SU (3), the condition (4.48) reads:

[T3, [Dµ, [D
µ, T3]]] + [T8, [Dµ, [D

µ, T8]]] = 0 (4.50)

Maximal abelian gauge fixing is more subtle in this case and the reader if
referred to the interesting 2002 paper by Stack, Tucker and Wensley [104].

4.3 Abelian and center projection on the lat-

tice.

On the lattice the gluon field does not appear explicitly and, instead, the
action is expressed in terms of link variables. Abelian gauge fixing and center
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projection on the lattice is usefully reviewed in the 1997 paper of Del Debbio,
Faber, Greensite and Olejnik [105]. In SU (2) , the maximal abelian gauge is
the gauge which maximizes

R =
∑

×

4
∑

µ=1

Tr
(

σ3Ux,x+µσ3U
†
x,x+µ

)

(4.51)

so as to make the link variables Ux,x+µ as diagonal as possible. Under a gauge
transformation, generated by the SU (2) element Ω (x) = eiχa(x)Ta , the link
variable transforms as:

Ux,x+µ → Ω (x)Ux,x+µΩ
† (x+ µ) (4.52)

and R transforms as:

RΩ →
∑

×

4
∑

µ=1

Tr
(

σ3Ω (x)Ux,x+µΩ
† (x+ µ)σ3Ω (x+ µ)U †

x,x+µΩ
† (x)

)

(4.53)
The maximal abelian gauge is then defined by the SU (2) element Ω (x) =
eiχa(x)Ta in which the angles αa (x) are chosen so as to maximize RΩ.

Abelian projection means the replacement of the full link variables by
Abelian links A according to the rule

U = a0I + i~a · ~σ → A =
a0I + ia3σ

3

√

a2
0 + a2

3

=

(

eiθ 0
0 e−iθ

)

(4.54)

where A stands for ”Abelian” (and does not designate the gauge field). In
these expressions, we have omitted the induces x and µ so that, for example,
U stands for Ux,x+µ and θ stands for θx,x+µ.

Abelian dominance, found by Suzuki and collaborators [12, 13], is essen-
tially the fact that the confining string tension can be extracted from the
Abelian link variables alone.

The matrix U remains abelian under U (1) gauge transformations of the
form

Ax,x+µ →
(

eiαx 0
0 e−iαx

)(

eiθx,x+µ 0
0 e−iθx,x+µ

)(

eiαx+µ 0
0 e−iαx+µ

)

(4.55)
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We can proceed to make a further gauge fixing by choosing the angles α (x)
so as to maximize the quantity

∑

x

4
∑

µ=1

cos2 (θx,x+µ) (4.56)

This defines the maximal center gauge. Of course, this still leaves a remaining
Z2 symmetry because θ is only determined modulo π. The, at each link
(x, x+ µ) we can define a value of Zx,x+µ as follows:

Zx,x+µ = sign (cos θx,x+µ) (4.57)

so that Zx,x+µ takes the values +1 or −1. Center projection means the
replacement of the full link variables by Abelian links Λ according to the
rule

U = a0I + i~a · ~σ → ZI =

(

Z 0
0 Z

)

(4.58)

in the computation of observables and Polyakov lines.
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Chapter 5

The confinement of SU (3) color
charges

If we wish to describe color confinement in terms of the Meissner effect of a
dual superconductor, we need to adapt the Landau-Ginzburg model to the
dynamics of quarks and gluons, so as to accommodate their color quantum
numbers. The action (3.1) of the Landau-Ginzburg model describes a U (1)
gauged self-interacting complex scalar field ψ. Since the magnetic current
of the dual superconductor is somehow related to the monopoles which are
formed by topological defects in a given gauge, as described in Sect. 4.1, it
might make sense to restrict the covariant derivative Dµ to the corresponding
abelian gauge. An adaptation of the Landau-Ginzburg model to color SU (3),
which respects Weyl symmetry, was proposed in the 1989 paper of Maedan
and Suzuki [10]. It was further developed in the 1993 paper of Kamizawa,
Matsubara, Shiba and Suzuki [106] and the 1999 papers of Chernodub and
Komarov [107, 108]. We shall first present the model in the absence of quark
charges. The latter will be introduced in Sect.5.2.
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5.1 An abelian SU (3) Landau-Ginzburg model

5.1.1 The model action and its abelian gauge invari-
ance

The model action, proposed by Maedan and Suzuki [55], has the form:

I (B3, B8, ψ, ψ
∗) =

∫

d4x

{

−1

2
(∂ ∧B3)

2 − 1

2
(∂ ∧ B8)

2

+
3
∑

a=1

[

1

2
|(∂µψa + ig (wa · Bµ)ψa)|2 −

1

2
b
(

ψaψ
∗
a − v2

)2
]

}

(5.1)

The first term is the kinetic term of the abelian dual gauge fields Bµ
3 and

Bµ
8 which can be grouped together to form the vector Bµ = (Bµ

3 , B
µ
8 ). The

model involves three complex scalar fields ψa=1,2,3. Each scalar field ψa is
gauged with the abelian covariant derivative Dµ = ∂µ + ig (wa ·Bµ) where
wa=1,2,3 are the three weight vectors (C.14) of the SU (3) group:

w1 = (1, 0) w2 =

(

−1

2
,−

√
3

2

)

w3 =

(

−1

2
,

√
3

2

)

(5.2)

Thus:

(w1 ·Bµ) = Bµ
3 (w2 · Bµ) = −1

2
Bµ

3−
√

3

2
Bµ

8 (w3 · Bµ) = −1

2
Bµ

3 +

√
3

2
Bµ

8

(5.3)
The magnetic charges appearing in the covariant derivative are assumed to
be proportional to the weight vectors wa, as discussed in Sect. 4.1.2. The
explicit form of the second term of the action (5.1) is:

1

2

3
∑

a=1

|(∂µψa + ig (wa ·Bµ)ψa)|2 =

=
1

2
|∂ψ1 + igB3ψ1|2 +

1

2

∣

∣

∣

∣

∣

∂ψ2 + ig

(

−1

2
B3 −

√
3

2
B8

)

ψ2

∣

∣

∣

∣

∣

2

+
1

2

∣

∣

∣

∣

∣

∂ψ3 + ig

(

−1

2
B3 +

√
3

2
B8

)

ψ3

∣

∣

∣

∣

∣

2

(5.4)

97



The last term is a potential by means of which the three scalar fields acquire
non-vanishing values |ψa| = v in the ground state. Note that the last term

does not have the form −1
2
b
(
∑3

a=1 ψaψ
∗
a − v2

)2
.

In this and the following sections, repeated indices i, a, ... are not assumed
summed unless it is explicitly stated. Repeated indices of the components
µ, ν, ... of Lorentz vectors and tensors are assumed to be explicitly summed.

It is sometimes useful to use a polar representation of the scalar fields:

ψa = Sae
igϕa (5.5)

in which case the action (5.1) acquires the form:

I (B3, B8, S, ϕ) =

∫

d4x

[

−1

2
(∂ ∧ B3)

2 − 1

2
(∂ ∧B8)

2

+

3
∑

a=1

[

g2S2
a

2
((wa · Bµ) + ∂ϕa)

2 +
1

2
(∂Sa)

2 − 1

2
b
(

S2
a − v2

)2
]

(5.6)

The actions (5.1) and (5.6) have a double gauge invariance. They are
invariant with respect to the abelian gauge transformation:

B3 → B3 + (∂β3)

ψ1 → ψ1e
−igβ3 ψ2 → ψ2e

i 1

2
gβ3 ψ3 → ψ3e

i 1

2
gβ3

ϕ1 → ϕ1 − β3 ϕ2 → ϕ2 +
1

2
β3 ϕ3 → ϕ3 +

1

2
β3 (5.7)

as well as to the abelian gauge transformation:

B8 → B8 + (∂β8)

ψ1 → ψ1 ψ2 → ψ2e
ig

√
3

2
β8 ψ3 → ψ3e

−ig
√

3

2
β8

ϕ1 → ϕ1 ϕ2 → ϕ2 +

√
3

2
β8 ϕ3 → ϕ3 −

√
3

2
β8 (5.8)

We can impose a constraint on the phases ϕa of the fields ψa, namely:

ϕ1 + ϕ2 + ϕ3 = 0 (5.9)

The constraint (5.9) means that the degrees of freedom of the system consist
of the two gauge fields Bµ

3 and Bµ
8 , the three real fields Sa=1,2,3 and two

phases chosen to be, for example, ϕ2 and ϕ3, in which case ϕ1 = −ϕ2 − ϕ3.
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The gauge transformations (5.7) can then be expressed in the more sym-
metric form:

(wa · B) → (wa ·B) + (∂αa) , ψa → ψae
igαaψa, ϕa → ϕa − αa

αa = (wa · β) (α1 + α2 + α3 = 0) (5.10)

where β = (β3, β8).
Such gauge transformations are compatible with the abelian gauge fixing,

described in Sect.4.1, which are only defined modulo residual U (1) transfor-
mations, to which the gauge transformations (5.10) belong.

The model action (5.1), as all model actions so far, is QCD inspired but
not derived. Variants to the form (5.6) have been proposed and studied. For
example, in reference [108], the last term is replaced by −1

2
b
∑3

a=1 (S2
a − v2

a)
2
.

In their 1990 paper, Maedan, Matsubara and Suzuki derive an effective
Landau-Ginzburg model assuming the existence of magnetic monopoles. The
latter are assumed to interact minimally with the gauge field Bµ to the dual
field tensor F̄ µν and a additional phenomenological interaction between the
monopoles is postulated [55]. The partition function of the dual supercon-
ductor can then be obtained by summing the trajectories of the monopoles in
a Feynman path integral, using a method developed by Bardakci and Samuel
[109]. The summation is expressed in terms of an action involving a gauged
complex scalar field. This derivation of the Landau-Ginzburg model is also
considered in the 2003 paper of Chernodub, Ichiguro and Suzuki [18].

5.2 The coupling of quarks to the gluon field

The color-SU (3) quarks may be regarded as color-electric charges embedded
in the dual superconductor, described by the action (5.1). They may be
coupled to the system with the help of Dirac strings, as done in Sect. 3.1.
We generalize the expression (3.3) by adding string sources

(

Ḡ3, Ḡ8

)

to the
dual abelian field tensors

(

F̄3, F̄8

)

:

F̄3 = ∂ ∧ B3 + Ḡ3 F̄8 = ∂ ∧ B8 + Ḡ8 (5.11)

The string sources G3 and G8 are antisymmetric tensors which satisfy the
equations:

∂αG
αµ
3 = jµ

3 ∂αG
αµ
8 = jµ

8 (5.12)
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where (jµ
3 , j

µ
8 ) are the color-electric currents. If we assume that the quarks

couple only to the abelian gluons A3µ and A8µ, then they contribute a term
to the lagrangian, of the form:

q̄ [γµ (i∂µ − eT3A3µ − eT8A8µ) +m] q (5.13)

in which case the color-electric currents jµ
3 and jµ

8 would be:

jµ
3 = −eq̄γµT3q jµ

8 = −eq̄γµT8q (5.14)

which agrees, of course, with the color charges (D.10) of the quarks.
In the presence of color-electric charge, the action (5.1) is replaced by:

I (B3, B8, ψ, ψ
∗) =

∫

d4x

{

−1

2

(

∂ ∧B3 + Ḡ3

)2 − 1

2

(

∂ ∧ B8 + Ḡ8

)2

+
3
∑

a=1

[

1

2
|(∂µψa + ig (wa · Bµ)ψa)|2 −

1

2
b
(

ψaψ
∗
a − v2

)2
]

}

(5.15)

Let us write:

Bµ
3 =

(

χ3, ~B3

)

Bµ
8 =

(

χ8, ~B8

)

(5.16)

and, in analogy to (2.90), let us express the string terms G3,8 in terms of

euclidean vectors ~Est
3,8 and ~Hst

3,8:

Ei
st,3 = −G0i

3 =
1

2
ε0ijkḠ3,jk H i

st,3 = −Ḡ0i
3 = −1

2
ε0ijkG3,jk

Ei
st,8 = −G0i

8 =
1

2
ε0ijkḠ8,jk H i

st,8 = −Ḡ0i
8 = −1

2
ε0ijkG8,jk (5.17)

The action (5.15) can be expressed in terms of euclidean fields, as in (3.22):

Ij

(

ψ, ψ∗, ~B, χ
)

=

∫

d4x

{

+
1

2

(

−∂t
~B3 − ~∇χ3 + ~Hst

3

)2

− 1

2

(

−~∇× ~B3 + ~Est
3

)2

+
1

2

(

−∂t
~B8 − ~∇χ8 + ~Hst

8

)2

− 1

2

(

−~∇× ~B8 + ~Est
8

)2

+

3
∑

a=1

[

1

2
|(∂tψa + ig (wa · χ)ψa)|2 −

1

2

∣

∣

∣

(

~∇ψa − ig
(

wa · ~B
)

ψa

)∣

∣

∣

2

−1

2
b
(

ψaψ
∗
a − v2

)2
]}

(5.18)

The fields χ3 and χ8 act as constraints which we do not write down.
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5.3 The energy of three static (quark) charges

Let us calculate the energy of three static color-electric charges, which, for
the sake of argument, we shall call quark charges. The quark charges are
listed in the table (D.10). Consider the case where three quarks, red, blue

and green, sit respectively at the points ~R, ~B and ~G. Such a configuration is
described by static color-charge densities (ρ3, ρ8), with:

ρ3 (~r) =
1

2
eδ
(

~r − ~R
)

− 1

2
eδ
(

~r − ~B
)

ρ8 (~r) =
1

2
√

3
eδ
(

~r − ~R
)

+
1

2
√

3
eδ
(

~r − ~B
)

− 1√
3
eδ
(

~r − ~G
)

(5.19)

It is illustrated on Fig.5.1. In Sect.2.11, we showed that, in the presence
of static charges, ~Hst = 0. The fields are time-independent and the energy
density is equal to minus the charge density. It is simple to check that, when
ψψ∗ 6= 0, the constraints imposed by χ3 and χ8 are satisfied by χ3 = χ8 = 0.
The energy obtained from (5.18) reduces to:

E (B,ψ, ψ∗) =

∫

d3r

{

1

2

(

−~∇× ~B3 + ~Est,3

)2

+
1

2

(

−~∇× ~B8 + ~Est,8

)2

+

3
∑

a=1

[

1

2

∣

∣

∣

(

~∇ψa − ig
(

wa · ~B
)

ψa

)∣

∣

∣

2

+
1

2
b
(

ψaψ
∗
a − v2

)2
]

}

(5.20)

For the color-electric charges (5.19), the string terms ~Est
3 and ~Est

8 can be
written in the form:

~Est,3 (~r) =
1

2e

∫ ~B

~R

d~Z δ
(

~r − ~Z
)

~Est,8 (~r) =
1

2
√

3e

(

∫ ~G

~B

−
∫ ~R

~G

)

d~Z δ
(

~r − ~Z
)

(5.21)

where, for example,
∫ ~B

~R
d~Z is a line integral along a path which stems from

the point ~R and terminates at the point ~B. The expressions (5.21) satisfy
the two equations (5.12). Figure 5.1 shows two examples of such strings.

We may proceed as in Sect. 3.3.1, and use the Ball-Caticha trick [54]
which consists in expressing the string terms:

~Est,3 (~r) = ~E0
3 (~r) + ~B0

3 (~r) ~Est,8 (~r) = ~E0
8 (~r) + ~B0

8 (~r) (5.22)
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Figure 5.1: The flux tubes formed by three static color-electric sources de-
noted R,B and G (red,blue and green). The two color-electric charges of
each quark are denoted in parentheses. The full and dashed lines denote
respectively the flux tubes formed by the color-electric fields ~E3 and ~E8. The
left figure denotes the ∆-shaped configuration and the right figure denotes
the Mercedes configuration. The side of the triangle is L and M = L√

3
is the

distance from a summit to the center of the triangle.

in terms of the electric fields
(

~E0
3 ,
~E0

8

)

and the gauge potentials
(

~B0
3 ,
~B0

8

)

which are calculated in the normal (non-superconducting) vacuum, in which
ψa = ψ∗

a = 0. The electric fields in the normal vacuum are the usual Coulomb
fields produced by the color-electric charges (5.19) of the quarks:

~E0
3 (~r) = − e

8π
~∇





1
∣

∣

∣
~r − ~R

∣

∣

∣

− 1
∣

∣

∣
~r − ~B

∣

∣

∣





~E0
8 (~r) = − e

8π
√

3
~∇





1
∣

∣

∣
~r − ~R

∣

∣

∣

+
1

∣

∣

∣
~r − ~B

∣

∣

∣

− 2
∣

∣

∣
~r − ~G

∣

∣

∣



 (5.23)

The gauge potentials
(

~B0
3 , ~B

0
8

)

in the normal vacuum are given by expres-

sions analogous to (3.28):

~B0
3 (~r) =

e

4π
~∇r ×

∫ ~B

~R

d~Z
1

∣

∣

∣
~r − ~Z

∣

∣

∣
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~B0
8 (~r) =

e

4π
√

3
~∇r ×

(

∫ ~G

~B

−
∫ ~R

~G

)

d~Z
1

∣

∣

∣
~r − ~Z

∣

∣

∣

(5.24)

When the forms (5.22) of the string terms are substituted into the energy
(5.20), an expression analogous to (3.37) is obtained:

E (B,ψ, ψ∗) = − e2

8π
∣

∣

∣

~R− ~B
∣

∣

∣

− e2

24π
∣

∣

∣

~R − ~G
∣

∣

∣

− e2

24π
∣

∣

∣

~B − ~G
∣

∣

∣

+

∫

d3r

{

1

2

(

−~∇× ~B3 + ~∇× ~B0
3

)2

+
1

2

(

−~∇× ~B8 + ~∇× ~B0
8

)2

+

3
∑

a=1

[

1

2

∣

∣

∣

(

~∇ψa − ig
(

wa · ~B
)

ψa

)∣

∣

∣

2

+
1

2
b
(

ψaψ
∗
a − v2

)2
]

}

(5.25)

5.4 Quantization of the electric and magnetic

charges

We can repeat the argument, given in Sect. 3.3.2, to show that the energy
(5.25) does not depend on the shape of the strings (5.24). A deformation of

a 3-string (the string which defines ~B3) corresponds to the transformation
~B0

3 → ~B0
3 + e

4π
~∇Ω3 of the field ~B0

3 . This adds a term e
4π
~∇ ×

(

~∇Ω3

)

to the

energy (5.25) which can be compensated by a singular gauge transformation
of type (5.7):

~B3 → ~B3 −
e

4π
~∇Ω3

ψ1 → ψ1e
ieg

Ω3
4π ψ2 → ψ2e

−ieg
Ω3
8π ψ3 → ψ3e

−ieg
Ω3
8π (5.26)

thereby leaving the energy (5.25) unchanged. As explained in Sect. 3.3.2, the
solid angle Ω3 (~r) is a discontinuous function of ~r. We can, however, make
the transformed fields (5.26) continuous and differentiable by imposing the
condition:

eg = 4nπ (5.27)

Similarly, a deformation of an 8-string (the string which defines ~B8) cor-

responds to the transformation ~B0
8 → ~B0

8 + e

4π
√

3
~∇Ω8 of the field ~B0

8 . The
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added gradient e

4π
√

3
~∇Ω8 can be compensated by a gauge transformation of

type (5.8):

B8 → B8 −
e

4π
√

3
~∇Ω8

ψ1 → ψ1 ψ2 → ψ2e
−ig e

8π
Ω8 ψ3 → ψ3e

ig e
8π

Ω8 (5.28)

thereby leaving the energy (5.25) unchanged. Again, the transformed fields
(5.28) become continuous and differentiable if the charge quantization condi-
tion (5.27) is satisfied. The factor of 2, which distinguishes the quantization
condition (5.27) from the quantization condition (2.80), is due to the fact
that electrons have electric charge e whereas the quarks have color-electric
charge 1

2
e.

5.5 Flux tubes formed by the electric and

magnetic fields

It is convenient to express the energy (5.25) in terms of the polar represen-
tation (5.5) of the complex scalar fields:

E (B,ϕ, S) = − e2

8π
∣

∣

∣

~R − ~B
∣

∣

∣

− e2

24π
∣

∣

∣

~R − ~G
∣

∣

∣

− e2

24π
∣

∣

∣

~B − ~G
∣

∣

∣

∫

d3r

{

1

2

(

~∇× ~B3 + ~∇× ~B0
3

)2

+
1

2

(

−~∇× ~B8 + ~∇× ~B0
8

)2

+

3
∑

a=1

[

g2S2
a

2

((

wa · ~B
)

− ~∇ϕa

)2

+
1

2

(

~∇Sa

)2

+
b

2

(

S2
a − v2

)2
]}

(5.29)

We can choose to work in the gauge defined by αa = ϕa, which is usually
referred to as the unitary gauge. In this gauge, the energy (5.29) reduces to:

E (B,ϕ, S) = − e2

8π
∣

∣

∣

~R − ~B
∣

∣

∣

− e2

24π
∣

∣

∣

~R − ~G
∣

∣

∣

− e2

24π
∣

∣

∣

~B − ~G
∣

∣

∣

∫

d3r

{

1

2

(

~∇× ~B3 + ~∇× ~B0
3

)2

+
1

2

(

−~∇× ~B8 + ~∇× ~B0
8

)2
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+

3
∑

a=1

[

g2S2
a

2

(

wa · ~B
)2

+
1

2

(

~∇Sa

)2

+
b

2

(

S2
a − v2

)2
]}

(5.30)

This expression of the energy, expressed in the unitary gauge, is not indepen-
dent of the shape of the strings, nor should it be, as explained in Sect.3.3.4.
In the unitary gauge, the flux tubes develop around the Dirac strings (5.24),
which can be chosen to be straight lines joining the charges. This choice
presumably minimizes the energy.

The fields which minimize the energy (5.30) give rise to flux tubes formed

by the color-electric fields ~E3 and ~E8, as in the Landau-Ginzburg model
described in Sect. 3.3. The electric fields are given by the analogue of the
expression (2.91):

~Eα = −~∇× ~Bα + ~Est,α = −~∇× ~Bα + ~∇× ~B0
α + ~E0

α (α = 3, 8) (5.31)

and the magnetic currents by the analogue of (2.94):

~jα = −~∇× ~Eα (α = 3, 8) (5.32)

Figure 5.1 shows two possible equilibrium shapes of the flux tubes. In the
left figure, the flux tubes join the charges thereby forming a ∆-shaped pattern
of electric fields. In the right figure, the ~E8 flux tubes converge first towards
the center of the triangle, thereby forming a Mercedes shaped pattern. Let
us estimate the energy contained in the flux tubes when the quarks are far
apart. Each flux tube, emanating from a quark gives rise to a linear confining
potential, the intensity of which is proportional to the squared charge of the
quark it stems from. It therefore contributes an energy which is proportional
to the square of the charge and to the length of the flux tube. For simplicity,
assume that the quarks are at the summit of an equilateral triangle of length
L, in which case the distance from a summit to the center of the triangle is
M = L√

3
. In the ∆-configuration, the color-electric field ~E3 contributes an

energy proportional to E3 (∆) = L
(

1
2
e
)2

and the color-electric field ~E8 an

energy proportional to E8 (∆) = 2L
(

1
2
√

3
e
)2

, so that the total energy of the

∆-shaped configuration is proportional to:

E (∆) = E3 (∆) + E8 (∆) = L

(

1

2
e

)2

+ 2L

(

1

2
√

3
e

)2

=
5

12
Le2 = 0.417 Le2

(5.33)
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In the Mercedes configuration, the color-electric field ~E3 still forms a flux
tube joining the red and blue quarks and contributes the same energy as
in the ∆-configuration. The color-electric field ~E8 contributes an energy

proportional to E8 (Y ) = 2M
(

1
2
√

3
e
)2

+M
(

1√
3
e
)2

, so that the total energy

of the Y-shaped configuration is proportional to:

E (Y ) = E3 (∆) + E8 (Y ) =
1

4
Le2 +

1

2
Me2 =

1

4
Le2 +

1

2

L√
3
e2 = 0.539 Le2

(5.34)
Thus the ∆-shaped configuration is energetically favored in this estimate, by
about 25% of the total energy. However, in a type I superconductor, flux
tubes attract, so that this attraction could modify the preceding estimate.
A numerical calculation would be required to check this. Lattice simulations
appear to favor the ∆-shaped configuration as long as the distance L between
the quarks is less than 0.7 fm [110].

The actual flux tubes formed by the color-electric fields ~E3 and ~E8, ob-
tained by minimizing the energy (5.25) of the Mercedes configuration are
computed and displayed in the 1993 paper of Kamizawa, Matsubara, Shiba
and Suzuki [106].

5.6 A Weyl symmetric form of the action

We are dealing with two gauge fields and three complex scalar fields and
this introduces an apparent asymmetry in the model, which, in fact, has the
virtue of respecting Weyl symmetry 1. We can obtain a form of the action,
in which Weyl symmetry is more explicit, by expressing the two abelian dual
gauge fields Bµ = (Bµ

3 , B
µ
8 )in terms of the three gauge fields bµa = (wa · Bµ).

Using the completeness relations (C.16) or (C.17), we can write the vector
Bµ = (Bµ

3 , B
µ
8 )as follows:

Bµ =
2

3

3
∑

a=1

wa (wa · Bµ) =
2

3

3
∑

a=1

wab
µ
a (5.35)

The three fields baµ are:

bµa = (wa · Bµ) bµ1 + bµ2 + bµ3 = 0 (5.36)
1The Weyl symmetry refers to the symmetry with respect to the exchange of the three

colors defined in the fundamental representation of the SU (3) group.
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They are not independent because they sum up to zero. They are, in fact,
the following linear combinations of the two fields Bµ

3 and Bµ
8 :

bµ1 = (w1 · Bµ) = Bµ
3

bµ2 = (w2 · Bµ) = −1

2
Bµ

3 −
√

3

2
Bµ

8 bµ3 = (w3 · Bµ) = −1

2
Bµ

3 +

√
3

2
Bµ

8

(5.37)
We have:

(Bµ ·Bµ) = B3µB
µ
3 +B8µB

µ
8 =

2

3

3
∑

a=1

baµb
µ
a

(∂ ∧ B)2 = (∂ ∧ B3)
2 + (∂ ∧B8)

2 =
2

3

3
∑

a=1

(∂ ∧ ba)2

∂µψa + ig (wa · Bµ)ψa = ∂µψa + igbµaψa (5.38)

Similarly, the two string terms G = (G3, G8) can be expressed in terms
of three string terms ga = (wa ·G) as follows:

G =
2

3

3
∑

a=1

waga (5.39)

where:
ga = (wa ·G) g1 + g2 + g3 = 0 (5.40)

The action (5.15) can then be written in the Weyl symmetric form:

I (b, ψ, ψ∗) =

∫

d4x
3
∑

a=1

[

−1

3
(∂ ∧ ba + ḡa)

2 +
1

2
|∂µψa + igbaµψa|2 −

1

2
b
(

ψaψ
∗
a − v2

)2
]

=

∫

d4x
3
∑

a=1

[

−1

3
(∂ ∧ ba + ḡa)

2 +
1

2
(∂Sa)

2 +
g2S2

a

2
(ba + (∂ϕa))

2 − 1

2
b
(

S2
a − v2

)2
]

(5.41)
When variations of the action are considered, the following constraints need
to be taken into account:

3
∑

a=1

ϕa = 0

3
∑

a=1

bµa = 0

3
∑

a=1

gµν
a = 0 (5.42)
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The possibly offending factors 1
3

could be changed to 1
2

by redefining the
fields ba and the source terms ḡa but we do not feel compelled to do this.

We can obtain a Weyl symmetric form of the action (5.18) by defining:

bµa =
(

ηa,~ba

)

η1 + η2 + η3 = 0 ~b1 +~b2 +~b3 = 0 (5.43)

We obtain:

Ij

(

ψ, ψ∗,~b, η
)

=

∫

d4x

3
∑

a=1

{

+
1

3

(

−∂t
~ba − ~∇ηa + ~hst

a

)2

− 1

3

(

−~∇×~ba + ~est
a

)2

+
1

2
|(∂tψa + igηaψa)|2 −

1

2

∣

∣

∣

(

~∇ψa − ig~baψa

)∣

∣

∣

2

− 1

2
b
(

ψaψ
∗
a − v2

)2
}

(5.44)

where:
~est,a =

(

wa · ~Est

)

~hst,a =
(

wa · ~Hst

)

(5.45)

When the color-charge densities (ρ3, ρ8)of the quarks are given by (5.19),
the corresponding color-charge densities ρa = (wa · ρ) have the remarkable
Weyl symmetric form:

ρ1 (~r) = ~w1 · ~ρ =
1

2
eδ
(

~r − ~R
)

− 1

2
eδ
(

~r − ~B
)

ρ2 (~r) = ~w2 · ~ρ = −1

2
eδ
(

~r − ~R
)

+
1

2
eδ
(

~r − ~G
)

ρ3 (~r) = ~w3 · ~ρ =
1

2
eδ
(

~r − ~B
)

− 1

2
eδ
(

~r − ~G
)

(5.46)

The sources (5.45) can be computed from the sources (5.21):

~est,1 (~r) =
1

2e

∫ ~B

~R

d~Z δ
(

~r − ~Z
)

~est,2 (~r) =
1

2e

∫ ~R

~G

d~Z δ
(

~r − ~Z
)

~est,3 (~r) =
1

2e

∫ ~G

~B

d~Z δ
(

~r − ~Z
)

(5.47)

which is compatible with the constraint ~est,1 +~est,2 +~est,3 = 0. In the expres-

sions above,
∫ ~B

~R
d~Z denotes a line integral along a path which begins at the

point ~R and ends at the point ~B. The sources ga are strings which satisfy
the equations:

∂ · ga = ja (5.48)
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where:
jµ
a = (wa · jµ) (jµ

1 + jµ
2 + jµ

3 ) = 0 (5.49)

In the presence of static sources ρa (~r), we have ~hst
a = 0 and the fields become

time-independent. The energy, obtained fro; (5.44), is:

Ej

(

ψ, ψ∗,~b, η
)

=

∫

d3r

3
∑

a=1

{

−1

3

(

~∇ηa

)2

− 1

2
g2η2

aψaψ
∗
a

+
1

3

(

−~∇×~ba + ~est,a

)2

+
1

2

∣

∣

∣

(

~∇ψa − ig~baψa

)∣

∣

∣

2

+
1

2
b
(

ψaψ
∗
a − v2

)2
}

(5.50)
The constraints imposed by the ηa, or, more rigorously, by the independent
fields η3 and η8 are satisfied with ηa = 0 so that the energy is:

Ej

(

ψ, ψ∗,~b
)

=

∫

d3r

3
∑

a=1

[

+
1

3

(

−~∇×~ba + ~est,a

)2

+
1

2

∣

∣

∣

(

~∇ψa − ig~baψa

)∣

∣

∣

2

+
1

2
b
(

ψaψ
∗
a − v2

)2
]

(5.51)
When we attempt to minimize the energy (5.51) with respect to variations
of the fields, we must remember the constraints:

~b1 (~r) +~b2 (~r) +~b3 (~r) = 0 ϕ1 (~r) + ϕ2 (~r) + ϕ2 (~r) = 0
(

ψa = Sae
igϕa
)

(5.52)
Figure (5.2) shows the flux tubes which are formed by the three electric

fields:

~e1 = ~E3 ~e2 = −1

2
~E3 −

√
3

2
~E8 ~e3 = −1

2
~E3 +

√
3

2
~E8 (5.53)

as well as the string terms (5.47). The figure shows two possible equilibrium
shapes of the flux tubes. In the ∆-shaped pattern, the flux tubes run in
straight lines from one color source to the other, whereas in the Mercedes
configuration, they converge first toward the center of the triangle. Flux
tubes running in opposite directions attract each other and this may lower
the energy of the Mercedes configuration. Flux tubes in the Weyl symmetric
representation are discussed in the 1998 paper of Chernodub and Komarov
[107].

109



R R

B BG G

1

3

3

2

2

1

Figure 5.2: The Weyl symmetric representation of the flux tubes formed by
three static color-electric sources denoted R,B and G (red,blue and green).
The left figure denotes the ∆-shaped configuration and the right figure de-
notes the Mercedes configuration.
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Appendix A

Vectors, tensors and their
duality transformations

A.1 Compact notation

Scalar and vector products of two vectors Aµ and Bµ are written as:

A·B = AµB
µ (A ∧B)µν = AµBν−AνBµ (∂ ∧ A)µν = (∂µAν)−(∂νAµ)

(A.1)
If Sµν = −Sνµ is an antisymmetric tensor, its contractions with a vector Aµ

are written in the form:

(A · S)µ = AνS
νµ = −SµνAν = − (S · A)µ (A.2)

If S and T are two antisymmetric tensors, we write:

S · T = ST =
1

2
SµνT

µν S · S ≡ S2 =
1

2
SµνS

µν (A.3)

The dot ”·” is not necessary when it is clear which symbols are vectors, which
are antisymmetric tensors, etc. In such cases we can write, for example:

(TA)µ = TµνA
ν ASB = AµS

µνBν etc. (A.4)
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A.2 The metric gµν and the antisymmetric

tensor εµναβ

In Minkowski space, we use the metric:

gµν = gµν =









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









det g = −1 (A.5)

The antisymmetric tensor εµναβ is:

ε0123 = −ε1023 = ... = 1 εµναβ = −εµναβ (A.6)

When indices of εµναβ are contracted, it is useful to think in terms of scalar
products of antisymmetric ”states”:

1

4!
εαβγµεαβγµ =

1

4!
det g = −1 (A.7)

εµαβγεµα′β′γ′ = −〈αβγ |α′β ′γ′ 〉 = − det





gα
α′ gα

β′ gα
γ′

gβ
α′ gβ

β′ gβ
γ′

gγ
α′ gγ

β′ gγ
β′





1

2
εµναβεµνα′β′ = −〈αβ|α′β ′〉 = − det

(

gα
α′ gα

β′

gβ
α′ gβ

β′

)

1

3!
εαβγµεαβγν = −〈µ |ν 〉 = −gµ

ν

1

4!
εαβγµεαβγµ = −1 (A.8)

The rule is that upper indices appear in the bras, lower indices appear in the
kets.

A.3 Vectors and their dual form

The metric gµν acts as the unit operator acting on a vector Aµ:

gA = A gµνAν = Aµ (A.9)
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A.3.1 Longitudinal and transverse components of vec-
tors

We define transverse and longitudinal projectors:

T µν =

(

gµν − ∂µ∂ν

∂2

)

Lµν =
∂µ∂ν

∂2
(A.10)

They have the properties:

T 2 = T L2 = L TL = LT = 0 T + L = g A = (T + L)A (A.11)

if:
AT = TA AL = LA A = AT + AL (A.12)

Then:

∂ · A = ∂ ·AL ∂ ∧A = ∂ ∧AT ∂ ·AT = 0 ∂ ∧AL = 0 (A.13)

A.3.2 Identities involving vectors

In the following, Aµ (x) , Bµ (x) and Cµ (x) are vector fields and nµ is a x-
independent vector:

A · (B ∧ C) = (A · B)C − (A · C)B (A.14)

n · (∂ ∧ A) = (n · ∂)A− ∂ (n · A) (A.15)

∂ · (n ∧ A) = (n · ∂)A− n (∂ · A) (A.16)
(

A · B ∧ C
)µ

= −εµαβγAαBβCγ (A.17)
(

n · ∂ ∧ A
)µ

= −εµαβγna (∂βAγ) (A.18)
(

∂ · n ∧ A
)µ

= εµαβγnα (∂βAγ) = −n ·
(

∂ ∧A
)

(A.19)

∂α (n ∧ (n · (∂ ∧ A)))αµ = (n · ∂)2Aµ−(n · ∂) ∂µ (n · A)−nµ (n · ∂) (∂ ·A)+∂2nµ (n · A)
(A.20)

∂ · (∂ ∧ A) = ∂2TA ∂ · ∂ ∧ A = 0 (A.21)

∂ ·(TA) = 0 ∂ ·(LA) = ∂ ·A ∂∧(TA) = ∂∧A ∂∧(LA) = 0 (A.22)
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In the following identities, surface terms are neglected:
∫

d4x (n · ∂ ∧ A) ·
(

n · ∂ ∧B
)

= −
∫

d4x (n · ∂ ∧B) ·
(

n · ∂ ∧ A
)

=

∫

d4x εµναβAµnν (n · ∂) ∂αBβ

= −
∫

d4x A (n · ∂)
[

n · ∂ ∧ B
]

= +

∫

d4x B (n · ∂)
[

n · ∂ ∧A
]

(A.23)

−
∫

d4x [n · (∂ ∧A)] [n · (∂ ∧ A)]

=

∫

d4x
[

A (n · ∂)2A− A (n · ∂) ∂ (n ·A) −An (n · ∂) (∂ · A) + (A · n) ∂2 (n · A)
]

(A.24)
∫

d4x (∂ ∧A) (∂ ∧B) = −
∫

d4xA [∂ · (∂ ∧ B)] = −
∫

d4xA∂2TB

∫

d4x (∂ · A) (∂ · B) = −
∫

d4xA∂ (∂ · B) = −
∫

d4xA∂2LB (A.25)

A.3.3 Identities involving vectors and antisymmetric

tensors

Other useful identities, valid for an antisymmetric tensor S and a vector A:

A · (A · S) = 0 (A.26)

L (∂ · S) = 0 T (∂ · S) = (∂ · S) (A.27)
∫

d4x (∂ ∧ A)S = −
∫

d4xA·(∂ · S)

∫

d4x
(

∂ ∧A
)

S = −
∫

d4xA·
(

∂ · S̄
)

(A.28)

A.4 Antisymmetric tensors and their dual form

The operator:
Gµν,αβ = gµαgνβ − gµβgµβ (A.29)

acts as the unit operator on an antisymmetric tensor S :

GS = S
1

2
Gµν,αβS

αβ = Sµν (A.30)
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A.4.1 The dual of an antisymmetric tensor

The dual of an antisymmetric tensor S is denoted as S̄:

S̄µν =
1

2
εµναβSαβ = (εS)µν (A.31)

We can regard ε as the operator εµν,αβ = εµναβ so as to write:

S̄µν = (εS)µν = εµναβS
αβ (Sε)µν = Sαβεαβµν = S̄ (A.32)

ε2 = −G (A.33)

and the duality transformation of antisymmetric tensors is reversible with a
minus sign:

S̄ = εS S = − (εεS) = −εS̄ (A.34)

If S and T are two antisymmetric tensors, we have:

TS = −TεεS = −T̄ S̄ T̄ S = TεS = T S̄ (A.35)

A.4.2 The Zwanziger identities

An antisymmetric tensor Sµν is entirely defined by the two vectors n · S and
n · S̄, where nµ is a given vector. Let S and T be two antisymmetric tensors.
If n · S = n · T and n · S̄ = n · T̄ , then S = T . To understand why, let us
choose nµ space-like:

nµ = (0, ~n) n2 = −~n · ~n (A.36)

Consider, for example, the six components of the electromagnetic field tensor

F µν =
(

~E, ~H
)

which can be written in terms of two Euclidean 3-dimensional

vectors ~E and ~H as in (2.1) and (2.2). The argument is valid, of course, for
any other antisymmetric tensor. The components of the 4-vectors n · F and
n · F̄ are:

(n · F )0 = −~n · ~E (n · F )i = −
(

~n× ~H
)

i

(

n · F
)0

= −~n · ~H
(

n · F
)i

=
(

~n× ~E
)

i
(A.37)

We see that n · F represents the longitudinal part of ~E and the transverse
part of ~H, whereas n · F̄ represents the transverse part of ~E and the longi-
tudinal part of ~H . The vectors ~n× ~E and ~n× ~H have only two components
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because they are orthogonal to the vector ~n. Therefore the eight components
of n · F and n · F̄ represent, in fact, the six independent components of the
antisymmetric tensor F µν .

The first Zwanziger identity [48] consists in writing any antisymmetric
tensor F µν in the form:

F =
1

n2

(

n ∧ (n · F ) − n ∧
(

n · F
)

)

(A.38)

which is correct because the left and right hand sides give the same value for
n · F and n · F̄ .

The second Zwanziger identity reads:

F 2 =
1

n2

(

(n · F )2 −
(

n · F̄
)2
)

(A.39)

From (A.37), we see that::

(n · F )2 =
(

~n · ~E
)2

−
(

~n× ~H
)2

(

n · F̄
)2

=
(

~n · ~H
)2

−
(

~n× ~E
)2

(A.40)
so that:

(n · F )2−
(

n · F̄
)2

=
(

~n · ~E
)2

+
(

~n× ~E
)2

−
(

~n× ~H
)2

−
(

~n · ~H
)2

= ~n2
(

~E2 − ~H2
)

(A.41)
Since n2 = −~n · ~n, the Zwanziger identity (A.39) is verified because F 2 =
~H2 − ~E2.

A.4.3 Longitudinal and transverse components of an-
tisymmetric tensors

We define the projectors Kµν,αβ and Eµν,αβ which are the differential opera-
tors:

Kµν,αβ =
1

∂2
(gµα∂ν∂β − gνα∂µ∂β + gνβ∂µ∂α − gµβ∂ν∂α)

E = εKε Eµν,αβ =
1

4
εµνσρK

σρ,γδεγδαβ = εµνσρ

1

∂2

(

gσγ∂ρ∂δ
)

εγδαβ (A.42)

The projectors K and E are related by the equations:

K2 = K E2 = −E KE = 0 K −E = G (A.43)
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We have:

KS =
1

∂2
∂ ∧ (∂ · S)

ES = εKεS = εKS̄ = ε
1

∂2

(

∂ ∧
(

∂ · S
))

=
1

∂2
∂ ∧

(

∂ · S
)

(A.44)

so that (K − E)S = S ≡ GS follows from (A.38).
If a and b commute with K and E, then:

(

1

a
K +

1

b
E

)

(aK + bE) = K − E = G (A.45)

In the following, S and T are antisymmetric tensor fields, and we neglect
surface terms in the integrals:

∂ · (∂ · S) = 0 (A.46)

∂ · (ES) = 0 ∂ · (KS) = T (∂ · S) = (∂ · S) ∂ · S = ∂ · (KS) (A.47)
∫

d4x (∂ · S) (∂ · T ) = −
∫

d4x S∂2KT (A.48)

∫

d4x
(

∂ · S̄
) (

∂ · T̄
)

= −
∫

d4x S∂2ET (A.49)

K (∂ ∧A) = ∂ ∧ (TA) = ∂ ∧ A E (∂ ∧A) = 0 (A.50)

K
(

∂ ∧A
)

= 0 E
(

∂ ∧ A
)

= −∂ ∧A (A.51)

The projectors K and E can also be defined in terms of a given vector nµ.
One simply replaces ∂µ by nµ. For example, the projector K can be defined
thus:

Kµν,αβ =
1

n2
(gµαnνnβ − gναnµnβ + gνβnµnα − gµβnνnα)

and we still have:

E = εKε K2 = K E2 = −E KE = 0 K −E = G (A.52)

The identity K −E = G is a statement of the Zwanziger identity (A.38).
Indeed, we have:

KS =
1

n2
n ∧ (n · S)

KS =
1

n2
n ∧ (n · S) ES = εKS̄ = ε

1

n2

(

n ∧
(

n · S
))

=
1

n2
n ∧

(

n · S
)

(A.53)
so that (K − E)S = S ≡ GS is a statement of (A.38).
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A.5 Antisymmetric and dual 3-forms

Let Tαβγ = −Tβαγ = ... be a tensor which is completely antisymmetric with
respect to the exchange of its indices. We define:

T 2 =
1

6
TαβγT

αβγ (A.54)

there being 3! = 6 identical terms in the sum. The dual of the tensor T αβγ

is the vector T̄ µ defined thus:

T̄ µ =
1

6
εµαβγTαβγ (A.55)

and we have:
T̄ 2 = −T 2 (A.56)

which, in explicit form, reads:

1

6
εµαβγTαβγ

1

6
εµα′β′γ′T α′β′γ′

= −1

6
TαβγT

αβγ (A.57)

This result can be checked using (A.8).
In the particular case where the tensor T is defined in terms of the deriva-

tive of an antisymmetric tensor Φµν :

Tαβγ = ∂αΦβγ + ∂βΦγα + ∂γΦαβ (A.58)

we have:

T̄ µ =
1

6
εµαβγTαβγ = −

(

∂ · Φ̄
)µ

(A.59)

so that:
1

2
T 2 = −1

2
T̄ 2 = −1

2

(

∂ · Φ̄
)2

(A.60)

Note also that, neglecting surface terms:

∫

d4x
1

2
T 2 = −

∫

d4x
1

2

(

∂ · Φ̄
)2

=
1

2

∫

d4x

(

−1

2
(∂ · Φ)2 − 1

2
Φ∂2Φ

)

(A.61)
We can also define the dual of a vector V µ to be the antisymmetric tensor

T αβγ defined as:
V̄ αβγ = εαβγµVµ (A.62)
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and we have:

V̄ 2 = −V 2 1

6
V̄ αβγ V̄αβγ = −V µVµ (A.63)

Note also that, neglecting surface terms:
∫

d4x
1

2
T 2 = −

∫

d4x
1

2

(

∂ · Φ̄
)2

=
1

2

∫

d4x

(

−1

2
(∂ · Φ)2 − 1

2
Φ∂2Φ

)

(A.64)
Note that, if:

Φ = ∂ ∧ A (A.65)

then:
Tαβγ = 0 T̄ µ = 0 (A.66)

However, if:
Φ = ∂ ∧ A (A.67)

then:
Tαβγ = ∂α∂ ∧ Aβγ + ∂β∂ ∧ Aγα + ∂γ∂ ∧ Aαβ

= ∂αεβγ12

(

∂1A2
)

+ ∂βεγα12

(

∂1A2
)

+ ∂γεαβ12

(

∂1A2
)

(A.68)

and the dual of T is:

T̄ µ =
1

6
εµαβγTαβγ =

(

∂2TA
)µ

= (∂ · (∂ ∧A))µ

A.6 Three-dimensional euclidean vectors

Formulas are taken from [47].
The cartesian components are i = (x, y, z) and the 3-dimensional anti-

symmetric tensor is:
ε123 = −ε213 = ... = 1 (A.69)

The cartesian component i = (x, y, z) of a three-dimensional vector ~a is
denoted by ai.

~a ·
(

~b× ~c
)

= ~b · (~c× ~a) = ~c ·
(

~a×~b
)

= εijkaibjck (A.70)

~a×
(

~b× ~c
)

= (~a · ~c)~b−
(

~a ·~b
)

~c (A.71)

(

~a×~b
)

·
(

~c× ~d
)

= (~a · ~c)
(

~b · ~d
)

−
(

~a · ~d
)(

~b · ~c
)

(A.72)
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~∇× ~∇ψ = 0 (A.73)

~∇ ·
(

~∇× ~a
)

= 0 (A.74)

~∇×
(

~∇× ~a
)

= ~∇
(

~∇ · ~a
)

− ~∇2~a (A.75)

~∇ · (ψ~a) = ~a · ~∇ψ + ψ~∇ · ~a (A.76)

~∇× (ψ~a) =
(

~∇ψ
)

× ~a+ ψ~∇× ~a (A.77)

~∇
(

~a ·~b
)

=
(

~a · ~∇
)

~b+
(

~b · ~∇
)

~a+ ~a×
(

~∇×~b
)

+~b×
(

~∇× ~a
)

(A.78)

~∇ · (~a× b) = ~b ·
(

~∇× ~a
)

− ~a
(

~∇×~b
)

(A.79)

~∇×
(

~a×~b
)

= ~a
(

~∇ ·~b
)

−~b
(

~∇ · ~a
)

+
(

~b · ~∇
)

~a−
(

~a · ~∇
)

~b (A.80)

We define longitudinal and transverse projectors:

Lij =
~∇i
~∇j

∇2
Tij = δij −

~∇i
~∇j

∇2
L2 = L T 2 = T LT = 0 (A.81)

A vector field may be decomposed into longitudinal and transverse parts:

~A = ~AL + ~AT =
1

∇2
~∇
(

~∇ · ~A
)

− 1

∇2
~∇×

(

~∇× ~A
)

(A.82)

~AL =
1

∇2
~∇
(

~∇ · ~A
)

~AT = ~A− 1

∇2
~∇
(

~∇ · ~A
)

= − 1

∇2
~∇×

(

~∇× ~A
)

(A.83)
∫

d3r
(

~∇ · ~A
)2

= −
∫

d3r ~AL∇2 ~AL

∫

d3r
(

~∇× ~A
)2

= −
∫

d3r ~AT∇2 ~AT

(A.84)
For the unit vector ~e = ~r

r
, we have:

~∇ · ~r = 3 ~∇× ~r = 0 (A.85)

~∇ · ~e =
2

r
~∇× ~e = 0

(

~e =
~r

r

)

(A.86)

(

~A · ~∇
)

~e =
1

r

(

~A− ~e
(

~A · ~e
))

=
~AT

r
(A.87)
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∫

d3r
(

~∇× ~A
)

· ~B =

∫

d3r ~A ·
(

~∇× ~B
)

(A.88)

∫

d3r
(

~∇× ~A
)

·
(

~∇× ~A
)

=

∫

d3r ~A ·
[

~∇×
(

~∇× ~A
)]

(A.89)

∫

S

~A · d~s =

∫

V

d3r ~∇ · ~A (divergence theorem) (A.90)

∫

S

ψd~s =

∫

V

d3r ~∇ψ (A.91)

∫

S

d~s× ~A =

∫

V

d3r ~∇× ~A (A.92)

∫

S

(

~∇× ~A
)

· d~s =

∮

C

~A · d~l (Stoke′s theorem) (A.93)

∫

S

d~s× ~∇ψ =

∮

C

ψd~l (A.94)

Note that in four dimensions, A ∧ B is a six-component antisymmetric
tensor, whereas in three dimensions, ~a ×~b is three component vector. That
is why the four-dimensional identity A · (B ∧ C) = (A · B)C − (A · C)B

plays the role of the three-dimensional identity ~a ×
(

~b× ~c
)

= (~a · ~c)~b −
(

~a ·~b
)

~c. That is also why a four-dimensional vector Aµ is represented by the

identity A = 1
n2 [n · (n ∧ A) + (n · A)n], whereas a three dimensional vector

~A is represented by the identity ~A = 1
n2

[(

~n · ~A
)

~n− ~n×
(

~n× ~A
)]

.

A.6.1 Cartesian coordinates

In cartesian coordinates, the position vector is ~r = (x, y, z). The three unit
vectors ~e(i=x,y,z) are:

~e(i) =
xi

r
~e(i) · ~e(j) = δij ~e(i) × ~e(j) = εijk~e(k) (A.95)

Any vector ~A can be expressed in terms of its cartesian components Ai=x,y,z:

~A = Ax~e(x) + Ay~e(y) + Az~e(z) (A.96)

121



Then:
~∇ψ = ~e(x)

∂ψ

∂x
+ ~e(y)

∂ψ

∂y
+ ~e(z)

∂ψ

∂z
(A.97)

~∇ · ~A =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z
(A.98)

~∇× ~A = ~e(x)

(

∂Az

∂y
− ∂Ay

∂z

)

+ ~e(y)

(

∂Ax

∂z
− ∂Az

∂x

)

+ ~e(z)

(

∂Ay

∂x
− ∂Ax

∂y

)

(A.99)

~∇2ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
(A.100)

A.6.2 Cylindrical coordinates

In cylindrical coordinates, the position vector is ~r = (ρ, θ, z) where the
cylindrical coordinates are expressed in terms of the cartesian coordinates
~r = (x, y, z) as follows:

x = ρ cos θ y = ρ sin θ z = z (A.101)

The three unit vectors ~e(i=ρ,θ,z) are defined by:

d~r = ~e(ρ)dρ+ ~e(θ)ρdθ + ~e(z)dz

∫

d3r =

∫ ∞

0

ρdρ

∫ ∞

−∞
dz

∫ 2π

0

dθ

~e(i) · ~e(j) = δij ~e(i) × ~e(j) = εijk~e(k) (i, j = ρ, θ, z) (A.102)

Any vector ~A can be expressed in terms of its cylindrical components Ai=ρ,θ,z:

~A = Aρ~e(ρ) + Aθ~e(θ) + Az~e(z) (A.103)

Then:
~∇ψ = ~e(ρ)

∂ψ

∂ρ
+ ~e(θ)

1

ρ

∂ψ

∂θ
+ ~e(z)

∂ψ

∂z
(A.104)

~∇ · ~A =
1

ρ

∂

∂ρ
(ρAρ) +

1

ρ

∂Aθ

∂θ
+
∂Az

∂z
(A.105)

~∇× ~A = ~e(ρ)

(

1

ρ

∂Az

∂θ
− ∂Aθ

∂z

)

+~e(θ)

(

∂Aρ

∂z
− ∂Az

∂ρ

)

+~e(z)
1

ρ

(

∂

∂ρ
(ρAθ) −

∂Aρ

∂θ

)

(A.106)
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∇2ψ =
1

ρ

∂

∂ρ

(

ρ
∂ψ

∂ρ

)

+
1

ρ2

∂2ψ

∂θ2
+
∂2ψ

∂z2
(A.107)

∫ ∞

0

ρdρ

∫ 2π

0

dθeikρ cos θf (ρ) = 2π

∫ ∞

0

ρdρJ0 (kρ) f (ρ) (A.108)

A.6.3 Spherical coordinates

In spherical coordinates, the position vector is ~r = (r, θ, ϕ) where the spher-
ical coordinates are expressed in terms of the cartesian coordinates ~r =
(x, y, z) as follows:

x = r sin θ cosϕ y = r sin θ sinϕ z = r cos θ (A.109)

The three unit vectors ~e(i=ρ,θ,ϕ) are defined by:

d~r = ~e(r)dr+~e(θ)r cos θ dθ+~eϕr sin θ dϕ

∫

d3r =

∫ ∞

0

r2dr

∫ π

0

sin θ dθ

∫ 2π

0

dϕ

~e(i) · ~e(j) = δij ~e(i) × ~e(j) = εijk~e(k) (i, j = r, θ, ϕ) (A.110)

Any vector ~A can be expressed in terms of its spherical components Ai=r,θ,ϕ:

~A = Ar~e(r) + Aθ~e(θ) + Aϕ~e(ϕ) (A.111)

Then:
~∇ψ = ~e(r)

∂ψ

∂r
+ ~e(θ)

1

r

∂ψ

∂θ
+ ~e(ϕ)

1

r sin θ

∂ψ

∂ϕ
(A.112)

~∇ · ~A =
1

r2

∂

∂r

(

r2Ar

)

+
1

r sin θ

∂

∂θ
(sin θ Aθ) +

1

r sin θ

∂Aϕ

∂ϕ
(A.113)

~∇× ~A = ~e(r)
1

r sin θ

(

∂

∂θ
(sin θ Aϕ) − ∂Aθ

∂ϕ

)

+~e(θ)

(

1

r sin θ

∂Ar

∂ϕ
− 1

r

∂

∂r
(rAϕ)

)

+~e(ϕ)
1

r

(

∂

∂r
(rAθ) −

∂A

∂
(A.114)

~∇2ψ =
1

r2

∂

∂r

(

r2∂ψ

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂ψ

∂θ

)

+
1

r2 sin2 θ

∂2ψ

∂ϕ2
(A.115)

1

r2

∂

∂r

(

r2∂ψ

∂r

)

=
1

r

∂2

∂r2
(rψ) (A.116)
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Note the identity:

~e(r)
1

4πr2
= −~∇×

(

1 + cos θ

4πr sin θ
~e(ϕ)

)

(A.117)

∫

d3rei~k·~rf (r) = 4π

∫ ∞

0

r2drj0 (kr) f (r) = 4π

∫ ∞

0

r2dr
sin kr

kr
f (r)

(A.118)
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Appendix B

The relation between
Minkowski and Euclidean
actions

The Minkowski action leads to canonical quantization and it is used to
calculate matrix elements of the evolution operator e−iHt. The Euclidean
action is used to calculate the partition function tre−βH . Lattice calcula-
tions are formulated in terms of the Euclidean action. In Minkowski space
gµν = (1,−1,−1,−1) and det g = −1, whereas in Euclidean space gµν =
(1, 1, 1, 1) = δµν and det g = +1. As a rule of the thumb, a Euclidean action
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can be transformed into a Minkowski action by the following substitutions:

Euclidean → Minkowski
gµν = diag (1, 1, 1, 1) = δµν → gµν = diag (1,−1,−1,−1)

(t, ~r) → (it, ~r)
(∂t, ∂i) = (∂t,∇i) → (−i∂t, ∂i) = (−i∂t,−∇i)

(A0, Ai) → (iA0, Ai)
(

j0,~j
)

→
(

ij0,~j
)

AµAµ → −AµAµ

∂2 = ∂2
0 + ∂2

i = ∂2
t + ∂2

i → −∂2 = −∂µ∂
µ

(∂ ∧A)0i = ∂0Ai − ∂iA0 → −i (∂ ∧ A)0i = −i (∂0Ai − ∂iA0)

(∂ ∧ A)ij = ∂iAj − ∂jAi → − (∂ ∧A)ij = −∂iAj + ∂jAi

1
4
(∂ ∧ A)2

µν → 1
4
(∂ ∧ A)µν (∂ ∧A)µν

εµναβ = εµναβ → εµναβ = −εµναβ

ε0123 = ε0123 = 1 → ε0123 = −ε0123 = 1

∂ ∧ A0i = 1
2
ε0ijk (∂ ∧ A)jk → −1

2
ε0ijk (∂ ∧ A)jk = −∂ ∧ A0i

∂ ∧Aij = εij0k (∂ ∧A)0k → i∂ ∧Aij
= iεij0k (∂ ∧ A)0k

1
4
∂ ∧Aµν∂ ∧ Aµν → −1

4
∂ ∧Aµν∂ ∧ Aµν

∫

d4x =
∫

dtdxdydz →
∫

d4x =
∫

dtdxdydz
(action) → − (action)

~E → −i ~E
~H → ~H

(B.1)

For example, the Minkowski Landau-Ginzburg action (3.8) of a dual super-
conductor is:

Ij (B, S, ϕ) =

∫

d4x

(

−1

2

(

∂ ∧ B + Ḡ
)2

+
g2S2

2
(B + ∂ϕ)2 +

1

2
(∂S)2 − 1

2
b
(

S2 − v2
)2
)

(B.2)
whereas the Euclidean action is:

Ij (B, S, ϕ) =

∫

d4x

(

1

2

(

∂ ∧B + Ḡ
)2

+
g2S2

2
(B − ∂ϕ)2 +

1

2
(∂S)2 +

1

2
b
(

S2 − v2
)2
)

(B.3)
The table (B.1) can be used to recover the Minkowski action (B.2) from the
Euclidean action (B.3). The change in sign of the action is chosen such that
the partition function can be written in terms of a functional integral of the
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Euclidean action, in the form:

Z = e−βH =

∫

D (B, S, ϕ) e−Ij(B,S,ϕ) (B.4)

In general however, the functional integrals need to be adapted to the acting
constraints..

We can choose to represent the Euclidean field tensor F µν = Fµν in terms

of Euclidean electric and magnetic fields ~E and ~H thus:

F µν =









0 −Ex −Ey −Ez

Ex 0 −Hz Hy

Ey Hz 0 −Hx

Ez −Hy Hx 0









F µν =
1

2
εµναβFαβ =









0 −Hx −Hy −Hz

Hx 0 Ez −Ey

Hy −Ez 0 Ex

Hz Ey −Ex 0









(B.5)
If we want to express the Euclidean field tensor as F = ∂ ∧ A then

the relation between the Euclidean and Minkowski electric and magnetic
fields is the one given at the end of table B.1.The Euclidean electric and
magnetic fields ~E and ~H are expressed in terms of the Euclidean gauge

potential Aµ =
(

φ, ~A
)

as follows:

~E = −∂t
~A+ ~∇φ ~H = −~∇× ~A (B.6)

In the Euclidean formulation, ε2 = G and the duality transformation of
antisymmetric tensors is reversible without a change in sign:

S̄µν =
1

2
εµναβSαβ Sµν =

1

2
εµναβS̄αβ (B.7)

The projectors K and E are defined by (A.42) with gµν = δµν and we have:

K2 = K = εKε E2 = E KE = 0 K + E = G (B.8)

with:
Gµν,αβ = (δµαδνβ − δµβδνα) (B.9)
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Appendix C

The generators of the SU (2)
and SU (3) groups

C.1 The SU (2) generators

The three Pauli matrices are:

σ1 =

(

0 1
1 0

)

σ2 =

(

0 −i
i 0

)

σ3 =

(

1 0
0 −1

)

(C.1)

σiσj = δij + iεijkσl (C.2)

The three generators of the SU (2) group are Ta = 1
2
σa.

C.2 The SU (3) generators and root vectors

The eight Gell-Mann matrices are:

λ1 =





0 1 0
1 0 0
0 0 0



 λ2 =





0 −i 0
i 0 0
0 0 0



 λ3 =





1 0 0
0 −1 0
0 0 0





λ4 =





0 0 1
0 0 0
1 0 0



 λ5 =





0 0 −i
0 0 0
i 0 0
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λ6 =





0 0 0
0 0 1
0 1 0



 λ7 =





0 0 0
0 0 −i
0 i 0



 λ8 =
1√
3





1 0 0
0 1 0
0 0 −2





(C.3)

λaλb =
2

3
δab + (dabc + ifabc)λc TaTb =

1

6
δab +

1

2
(dabc + ifabc)Tc (C.4)

trTaTb =
1

2
δab TaTb − TbTa = ifabcTc TaTb + TbTa =

1

3
δab + dabcTc

(C.5)
where Ta = 1

2
λa are the generators of the SU (3) group. There are two

diagonal generators, namely T3 and T8. They are said to form a Cartan
subalgebra in SU (3).

The fabc are antisymmetric in their indices f123 = −f213 = ... and the non
vanishing values are:

f123 = 1, f147 = f165 = f246 = f257 = f345 = f376 =
1

2
, f458 = f678 =

√
3

2
(C.6)

The dabc are symmetric in their indices d123 = d213 = ... and the non vanishing
values are:

d118 = d228 = d338 =
1√
3
, d146 = d157 = d256 = d344 = d355 =

1

2

d247 = d366 = d377 = −1

2
, d448 = d558 = d668 = d778 = d888 = d118 = − 1

2
√

3
(C.7)

The remaining six non-diagonal generators can be grouped together as
follows:

E±1 =
1√
2

(T1 ± iT2) E±2 =
1√
2

(T4 ∓ iT5) E±3 =
1√
2

(T6 ± iT7) (C.8)

The commutators with the diagonal generators are:

[T3, E±1] = ±E±1 [T3, E±2] = ∓1

2
E±2 [T3, E±3] = ∓1

2
E±3

[T8, E±1] = 0 [T8, E±2] = ∓
√

3

2
E±2 [T8, E±3] = ±

√
3

2
E±3 (C.9)
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The gluon field Aµ can be expressed thus:

Aµ = Aµ
aTa = Aµ

3T3 + Aµ
8T8 +

3
∑

a=1

Cµ∗
a Ea + Cµ

aE−a (C.10)

where the non-diagonal gluon fields are:

Cµ
1 =

1√
2

(Aµ
1 + iAµ

2 ) Cµ
2 =

1√
2

(Aµ
4 − iAµ

5 ) Cµ
3 =

1√
2

(Aµ
6 + iAµ

7 )

Cµ∗
1 =

1√
2

(Aµ
1 − iAµ

2 ) Cµ∗
2 =

1√
2

(Aµ
4 + iAµ

5 ) Cµ∗
3 =

1√
2

(Aµ
6 − iAµ

7 )

(C.11)

C.3 Root vectors of SU (3)

We can represent the two diagonal generators T3 and T8 by a two-dimensional
vector H :

H = (T3, T8) (C.12)

The commutators (C.9) of H with the non-diagonal generators can be ex-
pressed in the form:

[H,E±a] = ±waE±a (a = 1, 2, 3) (C.13)

The vectors wa are called the root vectors of the SU (3) group. Their com-
ponents are:

w1 = (1, 0) w2 =

(

−1

2
,−

√
3

2

)

w3 =

(

−1

2
,

√
3

2

)

(C.14)

The root vectors have unit length. They are neither orthogonal nor linearly
independent, because they sum up to zero:

(w1 · w1) = 1 (w2 · w2) = 1 (w3 · w3) = 1 w1+w2+w3 = 0 (C.15)

They form an over-complete set:

3
∑

a=1

wi
aw

j
a =

3

2
δij (C.16)
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where wi
a is the component i of the root vector wa. It can be useful to think

in terms of bras and kets and to write wi
a = 〈 i|wa〉 = 〈wa| i〉 with 〈i| j〉 = δij .

In this notation, the completeness relation (C.16) reads:

2

3

3
∑

a=1

|wa〉 〈wa| = 1 (C.17)

The abelian projection of the gluon field is:

Aµ = A3µT3 + A8µT8 = (Aµ ·H) Aµ ≡ (A3µ, A8µ) (C.18)

In view of (C.16), we can write:

Aµ =
2

3

3
∑

a=1

wa (wa · Aµ) (C.19)

and the abelian projection of the gluon field is then:

Aµ ·H =
2

3

3
∑

a=1

(H · wa) (wa · Aµ) =
2

3

3
∑

a=1

aaµta (C.20)

where the generators ta are:

ta = (H · wa) t1 + t2 + t3 = 0

t1 = (H · w1) = T3

t2 = (H · w2) = −1

2
T3 −

√
3

2
T8 t3 = (H · w3) = −1

2
T3 −

√
3

2
T8 (C.21)

and where the fields aaµ are:

aµa = (wa · Aµ) a1µ + a2µ + a3µ = 0

a1µ =
2

3
(w1 · Aµ) =

2

3
A3µ (C.22)

a2µ =
2

3
(w2 ·Aµ) =

1

3

(

−A3µ −
√

3A8µ

)

a3µ =
2

3
(w3 ·Aµ) =

1

3

(

−A3µ +
√

3A8µ

)

(C.23)
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Appendix D

Color charges of quarks and
gluons

D.1 SU (2) color charges

In SU (2), the charge operator is:

Q = eT3 =
1

2

(

e 0
0 −e

)

(D.1)

The quarks form a doublet in the fundamental representation of SU (2):

q =

(

qR
qB

)

Q

(

qR
qB

)

=
1

2
e

(

qR
−qB

)

(D.2)

The red and blue quarks have respectively color charges 1
2
e and −1

2
e.

The gluon field has the form (C.10):

Aµ = Aµ
aTa = Aµ

3T3 + Cµ∗
1 E1 + Cµ

1E−1 (D.3)

and the color charges of the gluons are given by the commutator:

[Q,Aµ] = e [T3, A
µ] = eCµ∗

1 E1 − eCµ
1E−1 (D.4)

The color charge of Aµ
3 is zero and the fields Cµ∗

1 and Cµ
1 have respectively

color charges e and −e.

qR qB Aµ
3 Cµ∗

1 Cµ∗
−1

e
2

− e
2

0 e −e (D.5)

132



D.2 SU (3) color charges

In SU (3) there are two color charge operators, associated respectively to the
diagonal matrices T3 and T8:

Q3 = eT3 =
1

2





e 0 0
0 −e 0
0 0 0



 Q8 = eT8 =
1

2
√

3





e 0 0
0 e 0
0 0 −2e





(D.6)
The charge operator can be represented by the vector Q = (Q3, Q8) =
e (T3, T8).

The quarks form a triplet in the fundamental representation of SU (3):

q =





qR
qB
qG



 Q3





qR
qB
qG



 =
1

2
e





qR
−qB

0



 Q8





qR
qB
qG



 =
1

2
√

3
e





qR
qB

−2qG





(D.7)
The red, blue and green quarks have respectively color charges Q3 equal to
1
2
e,−1

2
e and 0 and color charges Q8 equal to 1

2
√

3
e, 1

2
√

3
e and − 1√

3
e.

The gluon field has the form (C.10):

Aµ = Aµ
aTa = Aµ

3T3 +
3
∑

a=1

(Cµ∗
a Ea + Cµ

aE−a) (D.8)

We calculate the commutators of the charge operator (D.6) written in the
form (C.10):

[Q,Aµ] = e
3
∑

a=1

wa (Cµ∗
a Ea − Cµ

aE−a) (D.9)

where wa are the root vectors (C.13). The color charges of Aµ
3 and Aµ

8 are
zero and the fields Cµ∗

a and Cµ
a have respectively color charges ewa and −ewa.

qR qB qG A3 A8 Cµ∗
1 Cµ

1 Cµ∗
2 Cµ

2 Cµ∗
3 Cµ

3

Q3
1
2
e −1

2
e 0 0 0 e −e −1

2
e 1

2
e −1

2
e 1

2
e

Q8
1

2
√

3
e 1

2
√

3
e − 1√

3
e 0 0 0 0 −

√
3

2
e

√
3

2
e

√
3

2
e −

√
3

2
e

(D.10)
A model which confines only color charges will not confine the diagonal

gluons which have zero charge.
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